已知![]()
![]()
(1)當(dāng)
時(shí),求
的極大值點(diǎn);
(2)設(shè)函數(shù)
的圖象
與函數(shù)
的圖象
交于
、
兩點(diǎn),過(guò)線段
的中點(diǎn)做
軸的垂線分別交
、
于點(diǎn)
、
,證明:
在點(diǎn)
處的切線與
在點(diǎn)
處的切線不平行.
(1)
;(2)證明見解析.
解析試題分析:(1)極值點(diǎn)的求法是利用導(dǎo)數(shù)知識(shí)求解,求出
,求得
的解
,然后確定當(dāng)
以及
時(shí)的
的符號(hào),若當(dāng)
時(shí),
,當(dāng)
時(shí),
,則
是極大值點(diǎn),反之是極小值點(diǎn);(2)題設(shè)中沒(méi)有其他的已知條件,我們只能設(shè)![]()
,則
的橫坐標(biāo)為
,利用導(dǎo)數(shù)可得出切線的斜率
,
,題設(shè)要證明的否定性命題,我們用反證法,假設(shè)兩切線平行,即
,也即
,下面的變化特別重要,變化的意圖是把這個(gè)等式與已知函數(shù)聯(lián)系起來(lái),等式兩邊同乘以
,得![]()
![]()
![]()
,從而等式變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/44/f/uwodo2.png" style="vertical-align:middle;" />,注意到
,此等式為
能否成立?能成立,說(shuō)明存在平行,不能成立說(shuō)明不能平行.設(shè)
,仍然用導(dǎo)數(shù)的知識(shí)來(lái)研究函數(shù)的性質(zhì),
,即
是增函數(shù),從而在
時(shí),
,即等式
不可能成立,假設(shè)不成立,結(jié)論得證.
試題解析:(1)![]()
2分
令h’(x)=0,則4x2+2x-1=0,
解出x1=
,x2=
3分
4分
5分
所以
的極大值點(diǎn)為
6分
(2)設(shè)P、Q的坐標(biāo)分別是
.
則M、N的橫坐標(biāo)
.
∴C1在點(diǎn)M處的切線斜率為
,
C2在點(diǎn)N處的切線斜率為
. 7分
假設(shè)C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線平行,則
,
即
8分
則![]()
10分
設(shè)t=
,則
①
令![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時(shí)函數(shù)
取得極小值,求a的值;(2)求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(
).
(I)若
的定義域和值域均是
,求實(shí)數(shù)
的值;
(II)若
在區(qū)間
上是減函數(shù),且對(duì)任意的
,![]()
,總有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
是偶函數(shù).
(1)求
的值;
(2)設(shè)
,若函數(shù)
與
的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義:若
在
上為增函數(shù),則稱
為“k次比增函數(shù)”,其中
. 已知
其中e為自然對(duì)數(shù)的底數(shù).
(1)若
是“1次比增函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)
時(shí),求函數(shù)
在
上的最小值;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
,
.
(1)解方程:
;
(2)令
,
,求證:![]()
(3)若
是實(shí)數(shù)集
上的奇函數(shù),且
對(duì)任意實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
.
(1)若
,求證:函數(shù)
是
上的奇函數(shù);
(2)若函數(shù)
在區(qū)間
上沒(méi)有零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知命題
表示的曲線是雙曲線;命題
函數(shù)
在區(qū)間
上為增函數(shù),若“![]()
![]()
”為真命題,“![]()
![]()
”為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
畫出下列函數(shù)的圖象.
(1)y=2x-1,x∈Z,|x|≤2;
(2)y=2x2-4x-3(0≤x<3);
(3)y=
(lgx+|lgx|).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com