【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴(yán)重.該市環(huán)保研究所對(duì)近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù).f(t),隨時(shí)刻t(時(shí))變化的規(guī)律滿足表達(dá)式
,其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)令
,求x的取值范圍;
(2)若規(guī)定每天中f(t)的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過(guò)5,試求調(diào)節(jié)參數(shù)a的取值范圍.
【答案】(1)[0,1];(2)
.
【解析】
(1)題根據(jù)t的取值范圍,及復(fù)合函數(shù)同增的單調(diào)性可得x的取值范圍;
(2)題根據(jù)第(1)題的提示構(gòu)造一個(gè)函數(shù)h(x)=|x-a|+3a+2,然后將絕對(duì)值函數(shù)轉(zhuǎn)化成分段函數(shù),考慮單調(diào)性及最大值的取值,再與5比較,即可得到調(diào)節(jié)參數(shù)a的取值范圍.
(1)由題意,0≤t≤24,則1≤
t+1≤10,
∴0=lg1≤lg(
t+1)≤lg10=1.
故x的取值范圍為:[0,1].
(2)由(1),知: ![]()
可設(shè)![]()
則
.
根據(jù)一次函數(shù)的單調(diào)性,很明顯h(x)在[0,a)上單調(diào)遞減,在[a,1]上單調(diào)遞增.
∴用
表示函數(shù)的最大值是
中最大的值.
∵
,
∴
,即
,
解得0<a≤
.
∴a的取值范圍為:(0,
].
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次方程x2-mx+m2+m-1=0有兩實(shí)根x1,x2.
(1)求m的取值范圍;
(2)求x1x2的最值;
(3)如果
,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某物流公司購(gòu)買(mǎi)了一塊長(zhǎng)AM=90米,寬AN=30米的矩形地塊AMPN,規(guī)劃建設(shè)占地如圖中矩形ABCD的倉(cāng)庫(kù),其余地方為道路和停車場(chǎng),要求頂點(diǎn)C在地塊對(duì)角線MN上,B、D分別在邊AM、AN上,假設(shè)AB長(zhǎng)度為x米.若規(guī)劃建設(shè)的倉(cāng)庫(kù)是高度與AB的長(zhǎng)相同的長(zhǎng)方體建筑,問(wèn)AB長(zhǎng)為多少時(shí)倉(cāng)庫(kù)的庫(kù)容最大?(墻體及樓板所占空間忽略不計(jì))
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若
=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集為R,設(shè)集合A={x|(x+2)(x-5)≤0},
,C={x|a+1≤x≤2a-1}.
(1)求A∩B,(CRA)∪B;
(2)若C(A∩B),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品近一個(gè)月內(nèi)(30天)預(yù)計(jì)日銷量
(件)與時(shí)間t(天)的關(guān)系如圖1所示,單價(jià)
(萬(wàn)元/件)與時(shí)間t(天)的函數(shù)關(guān)系如圖2所示,(t為整數(shù))
![]()
(1)試寫(xiě)出
與
的解析式;
(2)求此商品日銷售額的最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰梯形
中,
,
于點(diǎn)
,
,且
.沿
把
折起到
的位置,使
.
(
)求證:
平面
.
(
)求三棱柱
的體積.
(
)線段
上是否存在點(diǎn)
,使得
平面
.若存在,指出點(diǎn)
的位置并證明;若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知拋物線C的方程C:y2="2" p x(p>0)過(guò)點(diǎn)A(1,-2).
(I)求拋物線C的方程,并求其準(zhǔn)線方程;
(II)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于
?若存在,求出直線l的方程;若不存在,說(shuō)明理由。
【答案】(I)拋物線C的方程為
,其準(zhǔn)線方程為
(II)符合題意的直線l 存在,其方程為2x+y-1 =0.
【解析】
試題(Ⅰ)求拋物線標(biāo)準(zhǔn)方程,一般利用待定系數(shù)法,只需一個(gè)獨(dú)立條件確定p的值:(-2)2=2p·1,所以p=2.再由拋物線方程確定其準(zhǔn)線方程:
,(Ⅱ)由題意設(shè)
:
,先由直線OA與
的距離等于
根據(jù)兩條平行線距離公式得:
解得
,再根據(jù)直線
與拋物線C有公共點(diǎn)確定![]()
試題解析:解 (1)將(1,-2)代入y2=2px,得(-2)2=2p·1,
所以p=2.
故所求的拋物線C的方程為![]()
其準(zhǔn)線方程為
.
(2)假設(shè)存在符合題意的直線
,
其方程為
.
由
得
.
因?yàn)橹本
與拋物線C有公共點(diǎn),
所以Δ=4+8t≥0,解得
.
另一方面,由直線OA到
的距離![]()
可得
,解得
.
因?yàn)椋?/span>1[-
,+∞),1∈[-
,+∞),
所以符合題意的直線
存在,其方程為
.
考點(diǎn):拋物線方程,直線與拋物線位置關(guān)系
【名師點(diǎn)睛】求拋物線的標(biāo)準(zhǔn)方程的方法及流程
(1)方法:求拋物線的標(biāo)準(zhǔn)方程常用待定系數(shù)法,因?yàn)槲粗獢?shù)只有p,所以只需一個(gè)條件確定p值即可.
(2)流程:因?yàn)閽佄锞方程有四種標(biāo)準(zhǔn)形式,因此求拋物線方程時(shí),需先定位,再定量.
提醒:求標(biāo)準(zhǔn)方程要先確定形式,必要時(shí)要進(jìn)行分類討論,標(biāo)準(zhǔn)方程有時(shí)可設(shè)為y2=mx或x2=my(m≠0).
【題型】解答題
【結(jié)束】
22
【題目】已知橢圓
:
的左右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)
在橢圓
上.
(1)求橢圓
的方程;
(2)直線
過(guò)橢圓左焦點(diǎn)
交橢圓于
,
為橢圓短軸的上頂點(diǎn),當(dāng)直線
時(shí),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里裝有9個(gè)球,其中有4個(gè)紅球,3個(gè)黃球和2個(gè)綠球,這些球除顏色外完全相同
從盒子中隨機(jī)取出2個(gè)球,求取出的2個(gè)球顏色相同的概率.
從盒子中隨機(jī)取出4個(gè)球,其中紅球個(gè)數(shù)分別記為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com