【題目】某超市為了了解“微信支付”與“支付寶支付”的情況(“微信支付”與“支付寶支付”統(tǒng)稱為“移動支付”),對消費(fèi)者在該超市在2019年1-6月的支付方式進(jìn)行統(tǒng)計(jì),得到如圖所示的折線圖,則下列判斷正確的是( )
①這6個(gè)月中使用“微信支付”的總次數(shù)比使用“支付寶支付”的總次數(shù)多
②這6個(gè)月中使用“微信支付”的消費(fèi)總額比使用“支付寶支付”的消費(fèi)總額大
③這6個(gè)月中4月份平均每天使用“移動支付”的次數(shù)最多
④2月份平均每天使用“移動支付”比5月份平均每天使用“移動支付”的次數(shù)多
![]()
A.①③B.①②③C.①③④D.①②③④
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱的軸截面
是邊長為2的正方形,點(diǎn)P是圓弧
上的一動點(diǎn)(不與
重合),點(diǎn)Q是圓弧
的中點(diǎn),且點(diǎn)
在平面
的兩側(cè).
![]()
(1)證明:平面
平面
;
(2)設(shè)點(diǎn)P在平面
上的射影為點(diǎn)O,點(diǎn)
分別是
和
的重心,當(dāng)三棱錐
體積最大時(shí),回答下列問題.
(i)證明:
平面
;
(ii)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形
中,
,平面
與半圓弧
所在的平面垂直,點(diǎn)
為半圓弧上異于
的動點(diǎn),
為
的中點(diǎn).
![]()
(1)求證:
;
(2)求三棱錐
體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱柱
中,
,點(diǎn)
是
的中點(diǎn),點(diǎn)
在
上,設(shè)二面角
的大小為
.
![]()
(1)當(dāng)
時(shí),求
的長;
(2)當(dāng)
時(shí),求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的定義域?yàn)?/span>
且滿足
,當(dāng)
時(shí),
.
(1)判斷
在
上的單調(diào)性并加以證明;
(2)若方程
有實(shí)數(shù)根
,則稱
為函數(shù)
的一個(gè)不動點(diǎn),設(shè)正數(shù)
為函數(shù)
的一個(gè)不動點(diǎn),且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟(jì)合作關(guān)系,共同打造政治互信、經(jīng)濟(jì)融合、文化包容的命運(yùn)共同體.自2013年以來,“一帶一路”建設(shè)成果顯著.下圖是2013-2017年,我國對“一帶一路”沿線國家進(jìn)出口情況統(tǒng)計(jì)圖.下列描述錯(cuò)誤的是( )
![]()
A.這五年,2013年出口額最少
B.這五年,出口總額比進(jìn)口總額多
C.這五年,出口增速前四年逐年下降
D.這五年,2017年進(jìn)口增速最快
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓![]()
(
)的左右頂點(diǎn)為
,上下頂點(diǎn)為
,菱形
的內(nèi)切圓
的半徑為
,橢圓的離心率為
.
(1)求橢圓
的方程;
(2)設(shè)
是橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),橢圓上一點(diǎn)
滿足
,試判斷直線
與圓
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直線PB與CD所成角的大小為
,求BC的長;
(Ⅱ)求二面角B-PD-A的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)為
的數(shù)列
各項(xiàng)均為正數(shù),且
,
.
(1)若數(shù)列
的通項(xiàng)
滿足
,且
,求數(shù)列
的前n項(xiàng)和為
;
(2)若數(shù)列
的通項(xiàng)
滿足
,前n項(xiàng)和為
,當(dāng)數(shù)列
是等差數(shù)列時(shí),對任意的
,均存在
,使得
成立,求滿足條件的所有整數(shù)
構(gòu)成的集合.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com