【題目】長沙市物價監督部門為調研某公司新開發上市的一種產品銷售價格的合理性,對某公司的該產品的銷量與價格進行了統計分析,得到如下數據和散點圖:
定價 | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量 | 1150 | 643 | 424 | 262 | 165 | 86 |
| 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
![]()
(參考數據:
,
)
(1)根據散點圖判斷,
與
和
與
哪一對具有的線性相關性較強(給出判斷即可,不必說明理由)?
(2)根據(1)的判斷結果及數據,建立
關于
的回歸方程(方程中的系數均保留兩位有效數字).
(3)定價為多少元/
時,年銷售額的預報值最大?
附:對于一組數據
,其回歸直線
的斜率和截距的最小二乘估計分別為
.
科目:高中數學 來源: 題型:
【題目】已知點
,點
是圓
上的任意一點,設
為該圓的圓心,并且線段
的垂直平分線與直線
交于點
.
(1)求點
的軌跡方程;
(2)已知
兩點的坐標分別為
,
,點
是直線
上的一個動點,且直線
分別交(1)中點
的軌跡于
兩點(
四點互不相同),證明:直線
恒過一定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定點
,圓C:
,
(1)過點
向圓C引切線l,求切線l的方程;
(2)過點A作直線
交圓C于P,Q,且
,求直線
的斜率k;
(3)定點M,N在直線
上,對于圓C上任意一點R都滿足
,試求M,N兩點的坐標.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A、B、C為△ABC的三個內角,且其對邊分別為a、b、c,若cosBcosC﹣sinBsinC=
.
(1)求角A;
(2)若a=2
,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓
,
在拋物線
上,圓
過原點且與
的準線相切.
(Ⅰ) 求
的方程;
(Ⅱ) 點
,點
(與
不重合)在直線
上運動,過點
作
的兩條切線,切點分別為
,
.求證:
(其中
為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:空間四邊形ABCD如圖所示,E、F分別是AB、AD的中點,G、H分別是BC,CD上的點,且
.
,則直線FH與直線EG( ) ![]()
A.平行
B.相交
C.異面
D.垂直
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com