【題目】如圖,在三棱柱
中,
平面ABC,
,E是BC的中點(diǎn),
.
![]()
求異面直線AE與
所成的角的大小;
若G為
中點(diǎn),求二面角
的余弦值.
【答案】(1)
;(2)![]()
【解析】
(1)以
分別為
軸建立空間直角坐標(biāo)系,利用向量
的夾角公式,求得夾角的余弦值,然后求得夾角的大小.(2)通過計(jì)算平面
和平面
的法向量,利用空間向量夾角公式,計(jì)算得二面角的余弦值.
解:
在三棱柱
中,
平面ABC,
,
![]()
E是BC的中點(diǎn),
.
以A為原點(diǎn),AB為x軸,AC為y軸,
為z軸,建立空間直角坐標(biāo)系,
0,
,
0,
,
2,
,
1,
,
0,
,
1,
,
2,
,
設(shè)異面直線AE與
所成的角為
,
則
,
,
異面直線AE與
所成的角為
.
2,
,
2,
,
設(shè)平面AGE的法向量
y,
,
則
,取
,得
,
平面ACG的法向量
0,
,
設(shè)二面角
的平面角為
,
.
二面角
的余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問題所用的時(shí)間,講座開始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用
表示學(xué)生掌握和接收概念的能力(
的值越大,表示接受能力越強(qiáng)),
表示提出和講授概念的時(shí)間(單位:分鐘),可以有以下公式:![]()
(1)開講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多長(zhǎng)時(shí)間?
(2)開講5分鐘與開講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià).階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:
階梯級(jí)別 | 第一階梯水量 | 第二階梯水量 | 第三階梯水量 |
月用水量范圍(單位:立方米) |
|
|
|
從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:
![]()
(1)現(xiàn)要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數(shù)
的分布列與數(shù)學(xué)期望;
(2)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到
戶月用水量為二階的可能性最大,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是橢圓
的左、右焦點(diǎn),點(diǎn)
在橢圓
上,線段
與
軸的交點(diǎn)
滿足
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)
作不與
軸重合的直線
,設(shè)
與圓
相交于
兩點(diǎn),與橢圓相交于
兩點(diǎn),當(dāng)
且
時(shí),求
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三角形面積為
,
,
,
為三角形三邊長(zhǎng),
為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為( )
A. ![]()
B. ![]()
C.
(
為四面體的高)
D.
(其中
,
,
,
分別為四面體四個(gè)面的面積,
為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為
,則球心
到四個(gè)面的距離都是
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.若a,b是兩條直線,且a∥b,那么a平行于經(jīng)過b的任何平面
B.若直線a和平面α滿足a∥α,那么a與α內(nèi)的任何直線平行
C.平行于同一條直線的兩個(gè)平面平行
D.若直線a,b和平面α滿足a∥b,a∥α,b不在平面α內(nèi),則b∥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)
,若在定義域內(nèi)存在實(shí)數(shù)
,滿足
,則稱
為“
類函數(shù)”.
(1)已知函數(shù)
,試判斷
是否為“
類函數(shù)”?并說明理由;
(2)設(shè)
是定義在
上的“
類函數(shù)”,求是實(shí)數(shù)
的最小值;
(3)若
為其定義域上的“
類函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若函數(shù)
在
上為減函數(shù),求實(shí)數(shù)
的最小值;
(2)若存在
,使
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com