【題目】如圖,直線AB經(jīng)過⊙O上一點C,⊙O的半徑為3,△AOB是等腰三角形,且C是AB中點,⊙O交直線OB于E、D. ![]()
(1)證明:直線AB與⊙O相切;
(2)若∠CED的正切值為
,求OA的長.
【答案】
(1)解:連接OC,
∵OA=OB,CA=CB,
∴OC⊥AB,
∴AB是⊙O的切線,即直線AB與⊙O相切.
(2)證明:依題意知,DE是直徑,
∴∠ECD=90°,
∴在Rt△ECD中,由tan∠CED=
,得
,
∵AB是⊙O的切線,
∴∠BCD=∠E,
又∵∠CBD=∠EBC,
∴△BCD∽△BEC,
∴
,設BD=x,則BC=2x,
又BC2=BDBE,
∴(2x)2=x(x+6),解得x1=0,x2=2,
∵BD=x>0,
∴BD=2,
∴OA=OB=BD+OD=3+2=5.
【解析】(1)連接OC,證明:OC⊥AB,即可證明直線AB與⊙O相切;(2)證明△BCD∽△BEC,可得
,利用切割線定理,求OA的長.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的空間幾何體中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為60°,且點E在平面ABC上的射影落在∠ABC的平分線上. ![]()
(1)求證:DE∥平面ABC;
(2)求二面角E﹣BC﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點、焦點在x軸上的橢圓C1與雙曲線C2有共同的焦點,設左右焦點分別為F1,F(xiàn)2,P是C1與C2在第一象限的交點,
PF1F2是以PF1為底邊的等腰三角形,若橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是( )
A. (
,+
) B. (
,+
) C. (
,+
) D. (0,+
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了緩解交通壓力,提倡低碳環(huán)保,鼓勵市民乘坐公共交通系統(tǒng)出行.為了更好地保障市民出行,合理安排運力,有效利用公共交通資源合理調(diào)度,在某地鐵站點進行試點調(diào)研市民對候車時間的等待時間(候車時間不能超過20分鐘),以便合理調(diào)度減少候車時間,使市民更喜歡選擇公共交通.為此在該地鐵站的一些乘客中進行調(diào)查分析,得到如下統(tǒng)計表和各時間段人數(shù)頻率分布直方圖:
分組 | 等待時間(分鐘) | 人數(shù) |
第一組 | [0,5) | 10 |
第二組 | [5,10) | a |
第三組 | [10,15) | 30 |
第四組 | [15,20) | 10 |
![]()
(1)求出a的值;要在這些乘客中用分層抽樣的方法抽取10人,在這10個人中隨機抽取3人至少一人來自第二組的概率;
(2)從這10人中隨機抽取3人進行問卷調(diào)查,設這3個人共來自X個組,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(x≠0,常數(shù)a∈R).
(1)判斷f(x)的奇偶性,并說明理由;
(2)若f(1)=2,試判斷f(x)在[2,+∞)上的單調(diào)性
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設
個質(zhì)數(shù)
構(gòu)成公差為
的等差數(shù)列,且
.求證
(1)當
是質(zhì)數(shù)時,
;
(2)當
時,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
+y2=1上兩個不同的點A,B關于直線y=mx+
對稱.
(1)求實數(shù)m的取值范圍;
(2)求△AOB面積的最大值(O為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
和
的焦點分別為
,
交于O,A兩點(O為坐標原點),且![]()
(Ⅰ)求拋物線
的方程;
(Ⅱ)過點O的直線交
的下半部分于點M,交
的左半部分于點N,點
,求
面積的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com