【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),直線
的參數方程為
(
為參數).以原點為極點,
軸的正半軸為極軸建立極坐標系,點
的極坐標方程為
.
(1)求點
的直角坐標,并求曲線
的普通方程;
(2)設直線
與曲線
的兩個交點為
,求
的值.
科目:高中數學 來源: 題型:
【題目】在極坐標系中,曲線
的極坐標方程為
,曲線
的極坐標方程為
,以極點
為坐標原點,極軸為
的正半軸建立平面直角坐標系
.
(1)求
和
的參數方程;
(2)已知射線
,將
逆時針旋轉
得到
,且
與
交于
兩點,
與
交于
兩點,求
取得最大值時點
的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體
中,已知四邊形
為矩形,
為平行四邊形,點
在平面
內的射影恰好為點
,
的中點為
,
的中點為
,且
.
(1)求證:平面
平面
;
(2)求三棱錐
的體積.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x|x﹣a|
(1)若函數y=f(x)+x在R上是增函數,求實數a的取值范圍;
(2)若對任意x∈[1,2]時,函數f(x)的圖像恒在y=1圖像的下方,求實數a的取值范圍;
(3)設a≥2時,求f(x)在區間[2,4]內的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若二次函數f(x)=x2+bx+c滿足f(2)=f(﹣2),且函數的f(x)的一個零點為1. (Ⅰ)求函數f(x)的解析式;
(Ⅱ)對任意的
,4m2f(x)+f(x﹣1)≥4﹣4m2恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
(
為自然對數的底數).
(1)設曲線
在
處的切線為
,若
與點
的距離為
,求
的值;
(2)若對于任意實數
,
恒成立,試確定
的取值范圍;
(3)當
時,函數
在
上是否存在極值?若存在,請求出極值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以
元/個的價格從面包店購進面包,然后以
元/個的價格出售.如果當天賣不完,剩下的面包以
元/個的價格賣給飼料加工廠.根據以往統計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以
(單位:個,
)表示面包的需求量,
(單位:元)表示利潤.
![]()
(Ⅰ)求
關于
的函數解析式;
(Ⅱ)根據直方圖估計利潤
不少于
元的概率;
(III)在直方圖的需求量分組中,以各組的區間中點值代表該組的各個值,并以需求量落入該區間的頻率作為需求量取該區間中間值的概率(例如:若需求量
,則取
,且
的概率等于需求量落入
的頻率),求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線經過點A(0,4),B(1,0),C(5,0),其對稱軸與x 軸相交于點M. ![]()
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)連結AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com