【題目】解答題。
(1)如圖,證明命題“a是平面π內的一條直線,b是π外的一條直線(b不垂直于π),c是直線b在π上的投影,若a⊥b,則a⊥c”為真.
(2)寫出上述命題的逆命題,并判斷其真假(不需要證明) ![]()
【答案】
(1)證明:證法一:如圖,過直線b上任一點作平面α的垂線n,設直線a,b,c,n對應的方向向量分別是
,則
共面,
根據平面向量基本定理,存在實數λ,μ使得
,
則
= ![]()
因為a⊥b,所以
,
又因為aα,n⊥α,
所以
,
故
,從而a⊥c
證法二
如圖,記c∩b=A,P為直線b上異于點A的任意一點,過P做PO⊥π,垂足為O,則O∈c,
∵PO⊥π,aπ,
∴直線PO⊥a,
又a⊥b,b平面PAO,PO∩b=P,
∴a⊥平面PAO,
又c平面PAO,
∴a⊥c
(2)證明:逆命題為:a是平面π內的一條直線,b是π外的一條直線(b不垂直于π),c是直線b在π上的投影,若a⊥c,則a⊥b,
逆命題為真命題
![]()
![]()
【解析】(1)證法一:做出輔助線,在直線上構造對應的方向向量,要證兩條直線垂直,只要證明兩條直線對應的向量的數量積等于0,根據向量的運算法則得到結果.證法二:做出輔助線,根據線面垂直的性質,得到線線垂直,根據線面垂直的判定定理,得到線面垂直,再根據性質得到結論.(2)把所給的命題的題設和結論交換位置,得到原命題的逆命題,判斷出你命題的正確性.
科目:高中數學 來源: 題型:
【題目】假設關于某設備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖并判斷是否線性相關;
(2)如果線性相關,求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】市疾病控制中心今日對我校高二學生進行了某項健康調查,調查的方法是采取分層抽樣的方法抽取樣本.我校高二學生共有2000人,抽取了一人200人的樣本,樣本中男生103人,請問我校共有女生( )
A.970
B.1030
C.997
D.206
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某工廠對甲乙兩個車間各10名工人生產的合格產品的統計結果的莖葉圖.設甲、乙的中位數分別為x甲、x乙 , 甲、乙的方差分別為s甲2、s乙2 , 則( ) ![]()
A.x甲<x乙 , s甲2<s乙2
B.x甲>x乙 , s甲2>s乙2
C.x甲>x乙 , s甲2<s乙2
D.x甲<x乙 , s甲2>s乙2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,E為BC上的動點. ![]()
(1)當E為BC的中點時,求證:PE⊥DE;
(2)設PA=1,在線段BC上存在這樣的點E,使得二面角P﹣ED﹣A的平面角大小為
.試確定點E的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,A為以原點O為圓心的單位圓O與x正半軸的交點,在圓心角為
的扇形AOB的弧AB上任取一點 P,作 PN⊥OA于N,連結PO,記∠PON=θ. ![]()
(1)設△PON的面積為y,使y取得最大值時的點P記為E,點N記為F,求此時
的值;
(2)求k=a|
||
|+
(a∈R,E 是在(1)條件下的點 E)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+bx+c,其對稱軸為y軸(其中b,c為常數) (Ⅰ)求實數b的值;
(Ⅱ)記函數g(x)=f(x)﹣2,若函數g(x)有兩個不同的零點,求實數c的取值范圍;
(Ⅲ)求證:不等式f(c2+1)>f(c)對任意c∈R成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面為矩形,PA是四棱錐的高,PB與DC所成角為45°,F是PB的中點,E是BC上的動點.
(Ⅰ)證明:PE⊥AF;
(Ⅱ)若BC=2BE=2
AB,求直線AP與平面PDE所成角的大。![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com