已知橢圓C:
=1(a>b>0)的離心率為
,一條準線l:x=2.
(1)求橢圓C的方程;
(2)設O為坐標原點,M是l上的點,F為橢圓C的右焦點,過點F作OM的垂線與以OM為直徑的圓D交于P,Q兩點.
①若PQ=
,求圓D的方程;
②若M是l上的動點,求證點P在定圓上,并求該定圓的方程.
科目:高中數學 來源: 題型:解答題
已知橢圓的中心為坐標原點,短軸長為2,一條準線的方程為l:x=2.
(1)求橢圓的標準方程.
(2)設O為坐標原點,F是橢圓的右焦點,點M是直線l上的動點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
與
的離心率相等. 直線
與曲線
交于
兩點(
在
的左側),與曲線
交于
兩點(
在
的左側),
為坐標原點,
.
(1)當
=
,
時,求橢圓
的方程;
(2)若
,且
和
相似,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:
+
=1(a>b>0)的左、右焦點分別為F1,F2,點A在橢圓C上,
·
=0,3|
|·|
|=-5
·
,|
|=2,過點F2且與坐標軸不垂直的直線交橢圓于P,Q兩點.
(1)求橢圓C的方程;
(2)線段OF2(O為坐標原點)上是否存在點M(m,0),使得
·
=
·
?若存在,求出實數m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
為橢圓
,
的左右焦點,
是坐標原點,過
作垂直于
軸的直線
交橢圓于
,設
.
(1)證明:
成等比數列;
(2)若
的坐標為
,求橢圓
的方程;
(3)在(2)的橢圓中,過
的直線
與橢圓
交于
、
兩點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知A,B,C是橢圓W:
+y2=1上的三個點,O是坐標原點.
(1)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
、
分別是橢圓
的左、右焦點.
(1)若
是第一象限內該橢圓上的一點,
,求點
的坐標;
(2)設過定點
的直線
與橢圓交于不同的兩點
、
,且
為銳角(其
中
為坐標原點),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設
,
分別是橢圓
:
的左、右焦點,過
作傾斜角為
的直線交橢圓
于
,
兩點,
到直線
的距離為
,連結橢圓
的四個頂點得到的菱形面積為
.
(1)求橢圓
的方程;
(2)過橢圓
的左頂點
作直線
交橢圓
于另一點
, 若點
是線段
垂直平分線上的一點,且滿足
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在
軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形F1B1 F2B2是一個面積為8的正方形.![]()
(1)求橢圓C的方程;
(2)已知點P的坐標為P(-4,0), 過P點的直線L與橢圓C相交于M、N兩點,當線段MN的中點G落在正方形內(包含邊界)時,求直線L的斜率的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com