(本小題滿分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F(xiàn)分別是D1B,AD的中點,![]()
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求出E點的坐標(biāo);
(2)證明:EF是異面直線D1B與AD的公垂線;
(3)求二面角D1—BF—C的余弦值.![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分) 如圖,平面
⊥平面
,其中
為矩形,
為梯形,
∥
,
⊥
,
=
=2
=2,
為
中點.
(Ⅰ) 證明
;
(Ⅱ) 若二面角
的平面角的余弦值為
,求
的長.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本小題滿分14分)
如圖,在直三棱柱
中,
,
,
,點
、
分別是
、
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)證明:平面
平面
;
(Ⅲ)求多面體A1B1C1BD的體積V.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖,三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點,
平面ABC![]()
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的余弦值;
(Ⅲ)求點C到平面A1BD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖,在四棱錐
中,
⊥平面
,
⊥平面
,
,
。
(1)求證:平面ADE⊥平面ABE;
(2)求二面角A—EB—D的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正三棱柱ABC—A1B1C1中,底面邊長及側(cè)棱長均為2,D是棱AB的中點,
(1)求證
;
(2)求異面直線AC1與B1C所成角的余弦值.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com