【題目】已知函數(shù)f(x)=cos2x+sinx﹣1
,則f(x)值域是 , f(x)的單調(diào)遞增區(qū)間是 .
【答案】
; ![]()
【解析】解:f(x)=cos2x+sinx﹣1=(1﹣sin2x)+sinx﹣1=﹣sin2x+sinx,
設(shè)sinx=t,t∈[0,1],
∴f(x)=﹣t2+t=﹣t(t﹣1),當(dāng)t=
,即sinx=
,x=
時函數(shù)f(x)取得最大值為
,
當(dāng)t=0,即sinx=0時,函數(shù)f(x)取得最小值為0.
∴f(x)值域是
,f(x)的單調(diào)遞增區(qū)間是
.
所以答案是:
,
.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合函數(shù)單調(diào)性的判斷方法的相關(guān)知識,掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”,以及對三角函數(shù)的最值的理解,了解函數(shù)
,當(dāng)
時,取得最小值為
;當(dāng)
時,取得最大值為
,則
,
,
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)面A1ADD1⊥底面ABCD,D1A=D1D=
,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn). ![]()
(1)求證:A1O∥平面AB1C;
(2)求銳二面角A﹣C1D1﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}中.已知a1=b1=1.a(chǎn)2=b2 . a6=b3
(1)求等差數(shù)列{an}的通項(xiàng)公式an和等比數(shù)列{bn}的通項(xiàng)公式bn;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別為CD、DD1的中點(diǎn),則異面直線EF與A1C1所成角的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(x,y)在圓x2+y2﹣6x﹣6y+14=0上
(1)求
的最大值和最小值;
(2)求x2+y2+2x+3的最大值與最小值;
(3)求x+y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
,
,
為非零向量,且
+
=
,
﹣
=
,則下列說法正確的個數(shù)為( ) ①若|
|=|
|,則
=0;
②若
=0,則|
|=|
|;
③若|
|=|
|,則
=0;
④若
=0,則|
|=|
|
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間四個點(diǎn)A(1,1,1),B(﹣4,0,2),C(﹣3,﹣1,0),D(﹣1,0,4),則直線AD與平面ABC所成的角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=
. ![]()
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣
,sin∠CBA=
,求BC的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com