已知橢圓
的短軸長等于焦距,橢圓C上的點(diǎn)到右焦點(diǎn)
的最短距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)
且斜率為
的直線
與
交于
、
兩點(diǎn),
是點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn),證明:
三點(diǎn)共線.
(Ⅰ)
; (Ⅱ)證明
得出
三點(diǎn)共線
解析試題分析:(Ⅰ)由題可知:
…………2分
解得
,![]()
橢圓C的方程為
…………………………4分
(Ⅱ)設(shè)直線
:
,
,
,
,
,
由
得
.…………6分
所以
,
. ……………………8分
而
,
,10分![]()
![]()
![]()
![]()
![]()
∴
三點(diǎn)共線 ……………………………………12分
考點(diǎn):本題主要考查橢圓標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系。
點(diǎn)評(píng):中檔題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了橢圓的定義及幾何性質(zhì)。為證明三點(diǎn)共線,本題利用了平面向量共線的條件,運(yùn)用向量的坐標(biāo)運(yùn)算,簡化了解題過程。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)拋物線方程為
,
為直線
上任意一點(diǎn),過
引拋物線的切線,切點(diǎn)分別為
.![]()
(1)求證:
三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2)已知當(dāng)
點(diǎn)的坐標(biāo)為
時(shí),
.求此時(shí)拋物線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C:
(a>b>0)的右焦點(diǎn)為F
(1,0),離心率為
,P為左頂點(diǎn)。
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)F
的直線交橢圓C于A,B兩點(diǎn),若△PAB的面積為
,求直線AB的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知直線
與曲線![]()
![]()
交于不同的兩點(diǎn)
,
為坐標(biāo)原點(diǎn).
(1)若
,求證:曲線
是一個(gè)圓;
(2)若
,當(dāng)
且
時(shí),求曲線
的離心率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)設(shè)
為拋物線
的焦點(diǎn),
為拋物線上任意一點(diǎn),已
為圓心,
為半徑畫圓,與
軸負(fù)半軸交于
點(diǎn),試判斷過
的直線與拋物線的位置關(guān)系,并證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)已知直線
與圓
的交點(diǎn)為A、B,
(1)求弦長AB;
(2)求過A、B兩點(diǎn)且面積最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓M的中心為坐標(biāo)原點(diǎn),且焦點(diǎn)在x軸上,若M的一個(gè)頂點(diǎn)恰好是拋物線
的焦點(diǎn),M的離心率
,過M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線
,交M于A,B兩點(diǎn)。
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)N(t,0)是一個(gè)動(dòng)點(diǎn),且
,求實(shí)數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.![]()
(1)求橢圓C的方程;
(2)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l,F(xiàn)2N⊥l.求四邊形F1MNF2面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知一條曲線上的點(diǎn)到定點(diǎn)
的距離是到定點(diǎn)
距離的二倍,求這條曲線的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com