【題目】設(shè)△ABC的內(nèi)角A,B,C所對邊分別為a,b,c,且a+c=6,b=2,cosB=
.
(1)求a,c的值;
(2)求sin(A﹣B)的值.
【答案】
(1)解:∵a+c=6①,b=2,cosB=
,
∴由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣
ac=36﹣
ac=4,
整理得:ac=9②,
聯(lián)立①②解得:a=c=3
(2)解:∵cosB=
,B為三角形的內(nèi)角,
∴sinB=
=
,
∵b=2,a=3,sinB=
,
∴由正弦定理得:sinA=
=
=
,
∵a=c,即A=C,∴A為銳角,
∴cosA=
=
,
則sin(A﹣B)=sinAcosB﹣cosAsinB=
×
﹣
×
= ![]()
【解析】(1)利用余弦定理列出關(guān)系式,將b與cosB的值代入,利用完全平方公式變形,求出acb的值,與a+c的值聯(lián)立即可求出a與c的值即可;(2)先由cosB的值,利用同角三角函數(shù)間的基本關(guān)系求出sinB的值,再由a,b及sinB的值,利用正弦定理求出sinA的值,進(jìn)而求出cosA的值,所求式子利用兩角和與差的正弦函數(shù)公式化簡后,將各自的值代入計(jì)算即可求出值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+x﹣ln(x+a)+3b在x=0處取得極值0. (Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若關(guān)于x的方程f(x)=
x+m在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2011年至2017年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求樣本中心點(diǎn)坐標(biāo);
(2)已知兩變量線性相關(guān),求y關(guān)于t的線性回歸方程;
(3)利用(2)中的線性回歸方程,分析2011年至2017年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2019年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式|x+3|<2x+1的解集為{x|x>m}. (Ⅰ)求m的值;
(Ⅱ)設(shè)關(guān)于x的方程|x﹣t|+|x+
|=m(t≠0)有解,求實(shí)數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六組[40,50),[50,60) ...[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求成績落在[70,80)上的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及以上為及格)、平均分、眾數(shù)和中位數(shù).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)正方形ABCD和ADEF所在平面互相垂直,設(shè)M、N分別是BD和AE的中點(diǎn),那么
;
面CDE;
;
MN,CE異面其中正確結(jié)論的序號(hào)是______.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在多面體
中,
平面
,
,四邊形
是邊長為
的菱形.
![]()
(1)證明:
;
(2)線段
上是否存在點(diǎn)
,使
平面
,若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
經(jīng)過點(diǎn)
,
,圓心在直線
上
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)若直線
與圓C相切且與
軸截距相等,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ![]()
(1)令N(x)=(1+x)2﹣1+ln(1+x),判斷并證明N(x)在(﹣1,+∞)上的單調(diào)性,并求N(0);
(2)求f(x)在定義域上的最小值;
(3)是否存在實(shí)數(shù)m,n滿足0≤m<n,使得f(x)在區(qū)間[m,n]上的值域也為[m,n]? (參考公式:[ln(1+x)′]=
)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com