已知拋物線
,點(diǎn)
,過
的直線
交拋物線
于
兩點(diǎn).
(1)若線段
中點(diǎn)的橫坐標(biāo)等于
,求直線
的斜率;
(2)設(shè)點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,求證:直線
過定點(diǎn).
(1)
;(2)![]()
解析試題分析:(1)因?yàn)辄c(diǎn)M在拋物線外面,所以過M與拋物線相交的直線斜率存在,用點(diǎn)斜式假設(shè)直線方程并聯(lián)立拋物線方程,消去y,即可得一個(gè)關(guān)于x的一元二次方程,由韋達(dá)定理及已知中點(diǎn)的橫坐標(biāo),即可求出斜率的值.
(2)由點(diǎn)A,B的橫坐標(biāo)滿足(1)式中的一元二次方程,由韋達(dá)定理可得根與系數(shù)的等式,再寫出直線
的方程,利用點(diǎn)差法將點(diǎn)A,B的坐標(biāo)帶入拋物線方程.即可求出直線過定點(diǎn),要做點(diǎn)是否存在的判定.
試題解析:(1)設(shè)過點(diǎn)
的直線方程為
,
由
得![]()
因?yàn)?
,且
,
所以,
.
設(shè)
,
,則
,
.
因?yàn)榫段
中點(diǎn)的橫坐標(biāo)等于
,所以
,
解得
,符合題意.
(2)依題意
,直線
,
又
,
,
所以 ![]()
![]()
因?yàn)?
, 且
同號(hào),所以
,
所以
,
所以,直線
恒過定點(diǎn)
.
考點(diǎn):1.直線與拋物線的位置關(guān)系.2.解方程的能力.3.恒過定點(diǎn)的問題.4.直線方程的表示.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
的離心率為
,
軸被曲線
截得的線段長等于
的短軸長。
與
軸的交點(diǎn)為
,過坐標(biāo)原點(diǎn)
的直線
與
相交于點(diǎn)
,直線
分別與
相交于點(diǎn)
。![]()
(1)求
、
的方程;
(2)求證:
。
(3)記
的面積分別為
,若
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線x2-y2=2若直線n的斜率為2 ,直線n與雙曲線相交于A、B兩點(diǎn),線段AB的中點(diǎn)為P,
(1)求點(diǎn)P的坐標(biāo)(x,y)滿足的方程(不要求寫出變量的取值范圍);
(2)過雙曲線的左焦點(diǎn)F1,作傾斜角為
的直線m交雙曲線于M、N兩點(diǎn),期中
,F(xiàn)2是雙曲線的右焦點(diǎn),求△F2MN的面積S關(guān)于傾斜角
的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,動(dòng)點(diǎn)
滿足:點(diǎn)
到定點(diǎn)
與到
軸的距離之差為
.記動(dòng)點(diǎn)
的軌跡為曲線
.
(1)求曲線
的軌跡方程;
(2)過點(diǎn)
的直線交曲線
于
、
兩點(diǎn),過點(diǎn)
和原點(diǎn)
的直線交直線
于點(diǎn)
,求證:直線
平行于
軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l:y=x+
,圓O:x2+y2=5,橢圓E:
=1(a>b>0)的離心率e=
,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點(diǎn)P作橢圓E的兩條切線,若切線都存在斜率,求證:兩切線的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)
,焦點(diǎn)
在
軸上,拋物線上的點(diǎn)
到
的距離為2,且
的橫坐標(biāo)為1.直線
與拋物線交于
,
兩點(diǎn).
(1)求拋物線的方程;
(2)當(dāng)直線
,
的傾斜角之和為
時(shí),證明直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線
經(jīng)過
、
兩點(diǎn)
(1)求雙曲線
的方程;
(2)設(shè)直線
交雙曲線
于
、
兩點(diǎn),且線段
被圓
:
三等分,求實(shí)數(shù)
、
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線
,其準(zhǔn)線方程為
,過準(zhǔn)線與
軸的交點(diǎn)
做直線
交拋物線于
兩點(diǎn).
(1)若點(diǎn)
為
中點(diǎn),求直線
的方程;
(2)設(shè)拋物線的焦點(diǎn)為
,當(dāng)
時(shí),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
(a>b>0)的離心率為
,右焦點(diǎn)為(
,0).
(I)求橢圓的方程;
(Ⅱ)過橢圓的右焦點(diǎn)且斜率為k的直線與橢圓交于點(diǎn)A(xl,y1),B(x2,y2),若
, 求斜率k是的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com