已知函數(shù)
,其中
為自然對數(shù)的底數(shù).
(Ⅰ)當
時,求曲線
在
處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若函數(shù)
存在一個極大值和一個極小值,且極大值與極小值的積為
,求
的
值.
(Ⅰ)所求面積為
. (Ⅱ)
.
解析試題分析:(Ⅰ)
, 當
時,
,
,
,所以曲線
在
處的切線方程為
切線與
軸、
軸的交點坐標分別為
,
, 所以,所求面積為
.
(Ⅱ)因為函數(shù)
存在一個極大值點和一個極小值點,
所以,方程
在
內(nèi)存在兩個不等實根,
. ,則![]()
設
為函數(shù)
的極大值和極小值,
則
,
,
因為,
,所以,
,
即
,
,
,
解得,
,此時
有兩個極值點,所以
.
考點:本題主要考查導數(shù)的幾何意義,直線方程,應用導數(shù)研究函數(shù)的單調(diào)性及極值。
點評:典型題,本題屬于導數(shù)應用中的基本問題,(2)涉及方程實根的討論及研究,運用了韋達定理,輕聲道切線斜率,等于函數(shù)在切點的導函數(shù)值。
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)
和“偽二次函數(shù)”
.
(Ⅰ)證明:只要
,無論
取何值,函數(shù)
在定義域內(nèi)不可能總為增函數(shù);
(Ⅱ)在同一函數(shù)圖像上任意取不同兩點A(
),B(
),線段AB中點為C(
),記直線AB的斜率為k.
(1)對于二次函數(shù)
,求證
;
(2)對于“偽二次函數(shù)”
,是否有(1)同樣的性質(zhì)?證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設定函數(shù)
(
>0),且方程
的兩個根分別為1,4。
(Ⅰ)當
=3且曲線
過原點時,求
的解析式;
(Ⅱ)若
在
無極值點,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知
為偶函數(shù),曲線
過點(2,5),
.
(1)若曲線
有斜率為0的切線,求實數(shù)
的取值范圍;
(2)若當
時函數(shù)
取得極值,確定
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知實數(shù)
,函數(shù)
.
(Ⅰ)若函數(shù)
有極大值32,求實數(shù)
的值;
(Ⅱ)若對
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=lnx-
.
(1)當
時,判斷f(x)在定義域上的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)![]()
.
(1)討論函數(shù)
在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)
在
處取得極值,對![]()
,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com