【題目】已知函數
.
(1)討論函數
的單調性;
(2)當
時,若函數
的導函數
的圖象與
軸交于
,
兩點,其橫坐標分別為
,
,線段
的中點的橫坐標為
,且
,
恰為函數
的零點,求證:
.
【答案】(1)當
時,
在
內單調遞增;當
時,
在
內單調遞減,在
,
內單調遞增;(2)見解析.
【解析】試題分析:(1)對函數求導后,利用導數與函數單調性的關系,對
進行討論可得函數單調性;(2)由函數的導函數可知,
又是
的零點,代入相減化簡得
,對
求導,
.令
,求得函數
.不等式得證.
試題解析:(1)由于
的定義域為
,則
.對于方程
,其判別式
.當
,即
時,
恒成立,故
在
內單調遞增.當
,即
,方程
恰有兩個不相等是實
,令
,得
或
,此時
單調遞增;令
,得
,此時
單調遞減.
綜上所述,當
時,
在
內單調遞增;當
時,
在
內單調遞減,在
,
內單調遞增.
(2)由(1)知,
,所以
的兩根
,
即為方程
的兩根.因為
,所以
,
,
.又因為
,
為
的零點,
所以
,
,兩式相減得
,得
.而
,所以
.
令
,由
得
,因為
,兩邊同時除以
,得
,因為
,故
,解得
或
,所以
.設
,所以
,則
在
上是減函數,所以
,
即
的最小值為
.
所以
.
科目:高中數學 來源: 題型:
【題目】已知三角形ABC的頂點坐標為A(﹣1,5)、B(﹣2,﹣1)、C(4,3).
(1)求AB邊上的高線所在的直線方程;
(2)求三角形ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某景區修建一棟復古建筑,其窗戶設計如圖所示.圓
的圓心與矩形
對角線的交點重合,且圓與矩形上下兩邊相切(
為上切點),與左右兩邊相交(
,
為其中兩個交點),圖中陰影部分為不透光區域,其余部分為透光區域.已知圓的半徑為1m,且
.設
,透光區域的面積為
.
(1)求
關于
的函數關系式,并求出定義域;
(2)根據設計要求,透光區域與矩形窗面的面積比值越大越好.當該比值最大時,求邊
的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】微信運動和運動手環的普及,增強了人民運動的積極性,每天一萬步稱為一種健康時尚,某中學在全校范圍內內積極倡導和督促師生開展“每天一萬步”活動,經過幾個月的扎實落地工作后,學校想了解全校師生每天一萬步的情況,學校界定一人一天走路不足
千步為不健康生活方式,不少于
千步為超健康生活方式者,其他為一般生活方式者,學校委托數學組調查,數學組采用分層抽樣的辦法去估計全校師生的情況,結合實際及便于分層抽樣,認定全校教師人數為
人,高一學生人數為
人,高二學生人數
人,高三學生人數
,從中抽取
人作為調查對象,得到了如圖所示的這
人的頻率分布直方圖,這
人中有
人被學校界定為不健康生活方式者.
(1)求這次作為抽樣調查對象的教師人數;
(2)根據頻率分布直方圖估算全校師生每人一天走路步數的中位數(四舍五入精確到整數步);
(3)校辦公室欲從全校師生中速記抽取
人作為“每天一萬步”活動的慰問對象,計劃學校界定不健康生活方式者鞭策性精神鼓勵
元,超健康生活方式者表彰獎勵
元,一般生活方式者鼓勵性獎勵
元,利用樣本估計總體,將頻率視為概率,求這次校辦公室慰問獎勵金額恰好為
元的概率.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】微信運動和運動手環的普及,增強了人民運動的積極性,每天一萬步稱為一種健康時尚,某中學在全校范圍內內積極倡導和督促師生開展“每天一萬步”活動,經過幾個月的扎實落地工作后,學校想了解全校師生每天一萬步的情況,學校界定一人一天走路不足
千步為不健康生活方式,不少于
千步為超健康生活方式者,其他為一般生活方式者,學校委托數學組調查,數學組采用分層抽樣的辦法去估計全校師生的情況,結合實際及便于分層抽樣,認定全校教師人數為
人,高一學生人數為
人,高二學生人數
人,高三學生人數
,從中抽取
人作為調查對象,得到了如圖所示的這
人的頻率分布直方圖,這
人中有
人被學校界定為不健康生活方式者.
(1)求這次作為抽樣調查對象的教師人數;
(2)根據頻率分布直方圖估算全校師生每人一天走路步數的中位數(四舍五入精確到整數步);
(3)校辦公室欲從全校師生中速記抽取
人作為“每天一萬步”活動的慰問對象,計劃學校界定不健康生活方式者鞭策性精神鼓勵
元,超健康生活方式者表彰獎勵
元,一般生活方式者鼓勵性獎勵
元,利用樣本估計總體,將頻率視為概率,求這次校辦公室慰問獎勵金額恰好為
元的概率.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,其前n項和為Sn , {bn}是等比數列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數列{an}與{bn}的通項公式;
(2)記Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 是否存在實數p,q,r,對于任意n∈N* , 都有Tn=pan+qbn+r,若存在求出p,q,r的值,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cosxsin(x+
)﹣
.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)△ABC中,角A,B,C所對的邊為a,b,c,f(
)=
,B=
,a=1,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市司法部門為了宣傳《憲法》舉辦法律知識問答活動,隨機對該市18~68歲的人群抽取一個容量為n的樣本,并將樣本數據分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對回答問題情況進行統計后,結果如下表所示.
組號 | 分組 | 回答正確的人數 | 回答正確的人數占本組的比例 |
第1組 | [18,28) | 5 | 0.5 |
第2組 | [28,38) | 18 | a |
第3組 | [38,48) | 27 | 0.9 |
第4組 | [48,58) | x | 0.36 |
第5組 | [58,68) | 3 | 0.2 |
![]()
(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機抽取2人頒發幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知△ABC的面積為3
,b﹣c=2,cosA=﹣
.
(1)求a和sinC的值;
(2)求cos(2A+
)的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com