如圖所示,O為坐標原點,過點P(2,0)且斜率為k的直線L交拋物線y
=2x于M(x
,y
),N(x
,y
)兩點. ⑴寫出直線L的方程;⑵求x
x
與y
y
的值;⑶求證:OM⊥ON![]()
⑴直線L方程為y=k(x-2)
⑵x
x
=4,y
y
=-4
(3)根據已知中直線的方程意義拋物線的方程聯立方程組,結合斜率公式來表示求證。
解析試題分析:解:
⑴
(Ⅰ)解:直線l過點P(2,0)且斜率為k,故可直接寫出直線l的方程為y=k(x-2) (k≠0)①
(Ⅱ)解:由①及y2=2x消去y代入可得k2x2-2(k2+1)x+4k2=0.②則可以分析得:點M,N的橫坐標x1與x2是②的兩個根,由韋達定理得x1x2由韋達定理得x1x2=
=4.又由y12=2x1,y22=2x2得到(y1y2)2=4x1x2=4×4=16,又注意到y1y2<0,所以y1y2=-4.(Ⅲ)證明:設OM,ON的斜率分別為k1,k2,則k
=
,k
=
.相乘得k
k
=
=-1
OM⊥ON
所以證得:OM⊥ON.
考點:直線與拋物線的位置關系
點評:主要是考查了拋物線的方程以及性質和直線與拋物線的位置關系,屬于基礎題。
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點為F2,點F1與F2關于坐標原點對稱,直線m垂直于
軸(垂足為T),與拋物線交于不同的兩點P、Q,且
.
(Ⅰ)求點T的橫坐標
;
(Ⅱ)若橢圓C以F1,F2為焦點,且F1,F2及橢圓短軸的一個端點圍成的三角形面積為1.
① 求橢圓C的標準方程;
② 過點F2作直線l與橢圓C交于A,B兩點,設
,若
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓具有性質:若
是橢圓
:
且
為常數
上關于原點對稱的兩點,點
是橢圓上的任意一點,若直線
和
的斜率都存在,并分別記為
,
,那么
與
之積是與點
位置無關的定值
.
試對雙曲線
且
為常數
寫出類似的性質,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標平面內,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知曲線
的參數方程為
,曲線
的極坐標方程為
.
(Ⅰ)將曲線
的參數方程化為普通方程;
(Ⅱ)判斷曲線
與曲線
的交點個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的兩個焦點
,
,過
且與坐標軸不平行的直線
與橢圓交于
兩點,如果
的周長等于8。
(1)求橢圓的方程;
(2)若過點
的直線
與橢圓交于不同兩點
,試問在
軸上是否存在定點
,使
恒為定值?若存在,求出點
的坐標及定值;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
拋物線
的準線與
軸交于
,焦點為
,若橢圓
以
、
為焦點、且離心率為
.
(1)當
時,求橢圓
的方程;
(2)若拋物線
與直線![]()
及
軸所圍成的圖形的面積為
,求拋物線
和直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系
中,曲線
的參數方程為
(
為參數)
是
上的動點,
點滿足
,
點的軌跡為曲線
.
(1)求
的方程;
(2)在以
為極點,
軸的正半軸為極軸的極坐標系中,射線
與
的異于極點的交點為
,與
的異于極點的交點為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
過點
的直線
交直線
于
,過點
的直線
交
軸于
點,
,
.
(1)求動點
的軌跡
的方程;
(2)設直線l與
相交于不同的兩點
、
,已知點
的坐標為(-2,0),點Q(0,
)在線段
的垂直平分線上且
≤4,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
O
中,直線
與拋物線
=2
相交于A、B兩點。
(1)求證:命題“如果直線
過點T(3,0),那么
=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com