【題目】已知拋物線C:
,點(diǎn)
在x軸的正半軸上,過點(diǎn)M的直線
與拋物線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
![]()
(1)若
,且直線
的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點(diǎn)M,使得不論直線
繞點(diǎn)M如何轉(zhuǎn)動(dòng),
恒為定值?
【答案】(1)以AB為直徑的圓的方程是
;(2)存在定點(diǎn)
,滿足題意.
【解析】試題分析:(1)由題意得
,直線
的方程
與拋物線方程聯(lián)立,利用韋達(dá)定理,可得圓心坐標(biāo)和圓的半徑,從而可得圓的方程.
(2)若存在定點(diǎn)這樣的點(diǎn)
,使得
恒為定值;直線
:
與拋物線C:
聯(lián)立,計(jì)算
,
,利用
恒為定值,可求出點(diǎn)
的坐標(biāo).
試題解析:(1)當(dāng)
時(shí),
,此時(shí),點(diǎn)M為拋物線C的焦點(diǎn),
直線
的方程為
,設(shè)
,聯(lián)立
,
消去y得,
,∴
,
,∴圓心坐標(biāo)為
.
又
,∴圓的半徑為4,∴圓的方程為
.
(2)由題意可設(shè)直線
的方程為
,則直線
的方程與拋物線C:
聯(lián)立,
消去x得:
,則
,
,
![]()
對任意
恒為定值,
于是
,此時(shí)
.
∴存在定點(diǎn)
,滿足題意.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校射擊隊(duì)的某一選手射擊一次,其命中環(huán)數(shù)的概率如表:
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該選手射擊一次,
(1)命中9環(huán)或10環(huán)的概率.
(2)至少命中8環(huán)的概率.
(3)命中不足8環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
為圓
的圓心,
是圓上動(dòng)點(diǎn),點(diǎn)
在圓的半徑
上,且有點(diǎn)
和
上的點(diǎn)
,滿足![]()
(1)當(dāng)
在圓上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程;
(2)若斜率為
的直線
與圓
相切,與(1)中所求點(diǎn)
的軌跡教育不同的兩點(diǎn)
是坐標(biāo)原點(diǎn),且
時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
過兩點(diǎn)
,
,且圓心
在直線
上.
(Ⅰ)求圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)直線
過點(diǎn)
且與圓
有兩個(gè)不同的交點(diǎn)
,
,若直線
的斜率
大于0,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在直線
使得弦
的垂直平分線過點(diǎn)
,若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,圓心為
,定點(diǎn)
,
為圓
上一點(diǎn),線段
上一點(diǎn)
滿足
,直線
上一點(diǎn)
,滿足
.
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)
為坐標(biāo)原點(diǎn),
是以
為直徑的圓,直線
與
相切,并與軌跡
交于不同的兩點(diǎn)
.當(dāng)
且滿足
時(shí),求
面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
在第一象限內(nèi)的點(diǎn)
到焦點(diǎn)
的距離為
.
(1)若
,過點(diǎn)
,
的直線
與拋物線相交于另一點(diǎn)
,求
的值;
(2)若直線
與拋物線
相交于
兩點(diǎn),與圓
相交于
兩點(diǎn),
為坐標(biāo)原點(diǎn),
,試問:是否存在實(shí)數(shù)
,使得
的長為定值?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來最嚴(yán)重的污染過程,為了探究車流量與
的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與
的數(shù)據(jù)如表:
![]()
(1)由散點(diǎn)圖知
與
具有線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程;(提示數(shù)據(jù):
)
(2)利用(1)所求的回歸方程,預(yù)測該市車流量為12萬輛時(shí)
的濃度.
參考公式:回歸直線的方程是
,其中
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,
,且滿足
.
(1)求點(diǎn)
的軌跡方程所代表的曲線
;
(2)若點(diǎn)
,
,
是曲線
上的動(dòng)點(diǎn),點(diǎn)
在直線
上,且滿足
,
,當(dāng)點(diǎn)
在
上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com