(本小題滿分14分)
已知函數f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)討論f(x)的單調性;
(2)設g(x)=(a2+
)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范圍.
⑴
,此時
在
上為減函數,在
上為增函數,在
上為減函數;
當
時,
,此時
在
上為減函數;
當
時,此時
在
上為減函數,在
上為增函數,在
上為減函數.
⑵ a的取值范圍為
.
【解析】
試題分析:⑴
,令
,
即
所以![]()
所以
…………………………………………………………………3分
,此時
在
上為減函數,在
上為增函數,在
上為減函數;
當
時,
,此時
在
上為減函數;
當
時,此時
在
上為減函數,在
上為增函數,在
上為減函數.
………………………………………………………………………………6分
⑵ 當
時,
,則
在
上為增函數,在
上為減函數
又![]()
∴
在
上的值域為
………………………………………8分
又
在
上為增函數,其值域為
……10分
![]()
等價于
……………………………………………12分
存在
使得
成立,只須![]()
,又![]()
∴a的取值范圍為
.
………………………………………………………………14分
考點:本題主要考查應用導數研究函數的單調性,恒成立問題。
點評:典型題,本題屬于導數應用中的基本問題,(2)涉及恒成立問題,轉化成求函數的最值,這種思路是一般解法,往往要利用“分離參數法”,本題最終化為最值之間故選的研究,體現考題“起點高,落點低”的特點。
科目:高中數學 來源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列
}是等比數列;
(2)設
,求
及數列{
}的通項公式;
(3)記
,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第
天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點
處的切線與直線
平行.
⑴ 求
,
滿足的關系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com