【題目】為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機抽取了8組數(shù)據(jù)作為研究對象,如下圖所示(
(噸)為買進(jìn)蔬菜的質(zhì)量,
(天)為銷售天數(shù)):
| 2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 |
| 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點圖;
![]()
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(Ⅲ)根據(jù)(Ⅱ)中的計算結(jié)果,若該蔬菜商店準(zhǔn)備一次性買進(jìn)25噸,則預(yù)計需要銷售多少天.
參考公式:
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
=(1,2),
=(2,﹣2).
(1)設(shè)
=4
+
,求
;
(2)若
+
與
垂直,求λ的值;
(3)求向量
在
方向上的投影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的首項為a,公差為b,方程ax2-3x+2=0的解為1和b,
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an·2n,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖. 圖中A點表示十月的平均最高氣溫約為
,B點表示四月的平均最低氣溫約為
. 下面敘述不正確的是 ( )
![]()
A. 各月的平均最低氣溫都在
以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于
的月份有5個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多面體
中,四邊形
為平行四邊形,
平面
,且
,
,
,
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)若直線
與平面
所成的角的正弦值為
,求
的值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
的參數(shù)方程為:
,以平面直角坐標(biāo)系xOy的原點O為極點,x軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(1)求直線
和曲線C的普通方程;
(2)在直角坐標(biāo)系中,過點B(0,1)作直線
的垂線,垂足為H,試以
為參數(shù),求動點H軌跡的參數(shù)方程,并指出軌跡表示的曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,平面
平面
,三角形
為等邊三角形,
,且
.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知圓
的圓心在直線
上,且過點
,與直線
相切.
(
)求圓
的方程.
(
)設(shè)直線
與圓
相交于
,
兩點.求實數(shù)
的取值范圍.
(
)在(
)的條件下,是否存在實數(shù)
,使得弦
的垂直平分線
過點
,若存在,求出實數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐S-ABCD中,底面ABCD為菱形,SD⊥平面ABCD,點E為SD的中點.
(1)求證:直線SB∥平面ACE
(2)求證:直線AC⊥平面SBD.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com