【題目】已知拋物線
:
,定點(diǎn)
(常數(shù)
)的直線
與曲線
相交于
、
兩點(diǎn).
(1)若點(diǎn)
的坐標(biāo)為
,求證: ![]()
(2)若
,以
為直徑的圓的位置是否恒過(guò)一定點(diǎn)?若存在,求出這個(gè)定點(diǎn),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析(2))以
為直徑的圓恒過(guò)定點(diǎn)![]()
【解析】試題分析:(1)要證明∠AED=∠BED,根據(jù)直線的傾斜角與斜率的關(guān)系,只要證KAE=-KBE即可,討論直線AB的斜率是否存在,設(shè)出直線方程,聯(lián)立拋物線的方程,運(yùn)用韋達(dá)定理和直線的斜率公式,即可得證;(2)設(shè)動(dòng)直線l方程為x=ty+b,表示出B坐標(biāo),聯(lián)立l與拋物線解析式,消去x得到關(guān)于y的方程,根據(jù)根的判別式等于0得出t與b的關(guān)系式,進(jìn)而設(shè)出A與O的坐標(biāo),表示出向量AO與向量BO根據(jù)圓周角定理得到兩向量垂直,即數(shù)量積為0,列出關(guān)系式,確定出當(dāng)m=1,n=0時(shí),上式對(duì)任意x∈R恒成立,即可得出使得以AB為直徑的圓恒過(guò)點(diǎn)O,以及此時(shí)O的坐標(biāo).
試題解析:(1)(a)當(dāng)直線
垂直于
軸時(shí),根據(jù)拋物線的對(duì)稱(chēng)性有,
;
當(dāng)直線
與
軸不垂直時(shí),依題意,
可設(shè)直線
的方程為
(
,
)
,
,則
、
兩點(diǎn)的坐標(biāo)
滿足方程組
消去
并整理,得
![]()
, ![]()
設(shè)直線
和
的斜率分別為
,
,則
![]()
![]()
![]()
![]()
![]()
, ![]()
.
綜合(a)(b)可知
.
(2)以
為直徑的圓恒過(guò)定點(diǎn)
.提示:證明![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,an+1=
Sn(n=1,2,3,…).則數(shù)列{an}的通項(xiàng)公式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓
的中心在原點(diǎn)
,長(zhǎng)軸左、右端點(diǎn)
、
在
軸上,橢圓
的短軸為
,且
、
的離心率都為
,直線
,
與
交于兩點(diǎn),與
交于兩點(diǎn),這四點(diǎn)縱坐標(biāo)從大到小依次為
、
、
、
.
![]()
(1)設(shè)
,求
與
的比值;
(2)若存在直線
,使得
,求兩橢圓離心率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
(
)的左右焦點(diǎn)分別為
,
,離心率為
,點(diǎn)
在橢圓
上,
,
,過(guò)
與坐標(biāo)軸不垂直的直線
與橢圓
交于
,
兩點(diǎn).
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
,
的中點(diǎn)為
,在線段
上是否存在點(diǎn)
,使得
?若存在,求實(shí)數(shù)
的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列
的前
項(xiàng)和記為
,
,點(diǎn)
在直線
上,其中
.
(1)若數(shù)列
是等比數(shù)列,求實(shí)數(shù)
的值;
(2)設(shè)各項(xiàng)均不為0的數(shù)列
中,所有滿足
的整數(shù)
的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列
的“積異號(hào)數(shù)”,令
(
),在(1)的條件下,求數(shù)列
的“積異號(hào)數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數(shù);又定義行列式
; 函數(shù)
(其中
).
(1)若函數(shù)g(θ)的最大值為4,求m的值.
(2)若記集合M={m|恒有g(shù)(θ)>0},N={m|恒有f[g(θ)]<0},求M∩N.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
與
的圖象關(guān)于直線
對(duì)稱(chēng).
(1)不等式
對(duì)任意
恒成立,求實(shí)數(shù)
的最大值;
(2)設(shè)
在
內(nèi)的實(shí)根為
,
,若在區(qū)間
上存在
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種“籠具”由內(nèi),外兩層組成,無(wú)下底面,內(nèi)層和外層分別是一個(gè)圓錐和圓柱,其中圓柱與圓錐的底面周長(zhǎng)相等,圓柱有上底面,制作時(shí)需要將圓錐的頂端剪去,剪去部分和接頭忽略不計(jì),已知圓柱的底面周長(zhǎng)為
,高為
,圓錐的母線長(zhǎng)為
.
(1)求這種“籠具”的體積;
(2)現(xiàn)要使用一種紗網(wǎng)材料制作50個(gè)“籠具”,該材料的造價(jià)為每平方米8元,共需多少元?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=
.
(1)若f(x)>k的解集為{x|x<﹣3或x>﹣2},求k的值;
(2)若對(duì)任意x>0,f(x)≤t恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com