【題目】用二分法研究函數(shù)f(x)=x3+3x﹣1的零點時,第一次經(jīng)計算f(0)<0,f(0.5)>0,可得其中一個零點x0∈ ,第二次應(yīng)計算的f(x)的值為f( ).
【答案】(0,0.5);0.25
【解析】解:∵f(0)f(0.5)<0,
∴其中一個零點x0∈(0,0.5);
第二次應(yīng)計算的f(x)的值為f(
)=f(0.25);
所以答案是:(0,0.5),0.25.
【考點精析】通過靈活運用函數(shù)的零點與方程根的關(guān)系,掌握二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,
矩形
所在的平面,
分別是
的中點.
![]()
(1)求證:
平面
;
(2)求證:
.
(3)當
滿足什么條件時,能使
平面
成立?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設(shè)
多個分支機構(gòu),需要國內(nèi)公司外派大量
后、
后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從
后和
后的員工中隨機調(diào)查了
位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
|
|
|
|
|
|
|
|
合計 |
|
|
|
(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有
以上的把握認為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(Ⅱ)該公司舉行參觀駐海外分支機構(gòu)的交流體驗活動,擬安排
名參與調(diào)查的
后、
后員工參加.
后員工中有愿意被外派的
人和不愿意被外派的
人報名參加,從中隨機選出
人,記選到愿意被外派的人數(shù)為
;
后員工中有愿意被外派的
人和不愿意被外派的
人報名參加,從中隨機選出
人,記選到愿意被外派的人數(shù)為
,求
的概率.
參考數(shù)據(jù):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(參考公式:
,其中
).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=
(x>0),則給出以下四個結(jié)論:
①函數(shù)f(x)的值域為[0,1];
②函數(shù)f(x)的圖象是一條曲線;
③函數(shù)f(x)是(0,+∞)上的減函數(shù);
④函數(shù)g(x)=f(x)﹣a有且僅有3個零點時
.
其中正確的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將圓
為參數(shù))上的每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>
倍,得到曲線![]()
(1)求出
的普通方程;
(2)設(shè)直線
:
與
的交點為
,
,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,求過線段
的中點且與
垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)![]()
(Ⅰ)當
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當
,
時,證明:
(其中
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列命題中,正確的是( )
A. 垂直于同一個平面的兩個平面互相平行 B. 垂直于同一個平面的兩條直線互相平行
C. 平行于同一個平面的兩條直線互相平行 D. 平行于同一條直線的兩個平面互相平行
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設(shè)f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)若
在
上的最大值為
,求實數(shù)
的值;
(2)若對任意
,都有
恒成立,求實數(shù)
的取值范圍;
(3)在(1)的條件下,設(shè)
,對任意給定的正實數(shù)
,曲線
上是否存在兩點
、
,使得
是以
(
為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?請說明理由。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com