(本題滿分15分)
已知數(shù)列
滿足:
,數(shù)列
滿足
.
(1)若
是等差數(shù)列,且
求
的值及
的通項(xiàng)公式;
(2)若
是等比數(shù)列,求
的前
項(xiàng)和
;
(3)若
是公比為
的等比數(shù)列,問(wèn)是否存在正實(shí)數(shù)
,使得數(shù)列
為等比數(shù)列?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/51/c/bigse4.gif" style="vertical-align:middle;" />是等差數(shù)列,
, ……..2分
,
解之得
或者
(舍去) ……..4分
. ……..5分
(2)若
是等比數(shù)列,其中
公比
,
, ……..6分
, ……..7分
,當(dāng)
時(shí),
; ……..8分
當(dāng)
時(shí),
……..10分
(3)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c5/3/oy81c1.gif" style="vertical-align:middle;" />是公比為
的等比數(shù)列,所以
, ……..11分
若
為等比數(shù)列,則
, ……..12分
,即![]()
, ……..13分
,無(wú)解.
不存在正實(shí)數(shù)
,使得數(shù)列
為等比數(shù)列.……..15分
另解:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c5/3/oy81c1.gif" style="vertical-align:middle;" />是公比為
的等比數(shù)列,
,
, ……..12分
若
為等比數(shù)列,則
,
, ……..13分
,無(wú)解,
不存在正實(shí)數(shù)
,使得數(shù)列
為等比數(shù)列.……..15分
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省余姚中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:解答題
(本題滿分15分)已知點(diǎn)
(0,1),
,直線
、
都是圓
的切線(
點(diǎn)不在
軸上).
(Ⅰ)求過(guò)點(diǎn)
且焦點(diǎn)在
軸上的拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)(1,0)作直線
與(Ⅰ)中的拋物線相交于![]()
兩點(diǎn),問(wèn)是否存在定點(diǎn)
使
為常數(shù)?若存在,求出點(diǎn)
的坐標(biāo)及常數(shù);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省揚(yáng)州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)
已知命題p:
,命題q:
. 若“p且q”為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知函數(shù)
.
(Ⅰ)若
為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)
時(shí),求函數(shù)
的最大值;
(Ⅲ)當(dāng)
,且
時(shí),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三下學(xué)期2月模擬考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知圓N:
和拋物線C:
,圓的切線
與拋物線C交于不同的兩點(diǎn)A,B,
(1)當(dāng)直線
的斜率為1時(shí),求線段AB的長(zhǎng);
(2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線
對(duì)稱,問(wèn)是否存在直線
使得
?若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題
(本題滿分15分)已知直線
,曲線![]()
(1)若
且直線與曲線恰有三個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)
的取值;
(2)若
,直線與曲線M的交點(diǎn)依次為A,B,C,D四點(diǎn),求|AB+|CD|的取值范圍。[來(lái)源:Z+xx+k.Com]
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com