【題目】將函數(shù)y=sinx的圖象向右平移
個(gè)單位,再將所得函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=sin(ωx+φ),(ω>0,|φ|<
)的圖象,則( )
A.ω=2,φ=﹣ ![]()
B.ω=2,φ=﹣ ![]()
C.ω=
,φ=﹣ ![]()
D.ω=
,φ=﹣ ![]()
【答案】C
【解析】解:將函數(shù)y=sinx的圖象向右平移
個(gè)單位,得到函數(shù)y=sin(x﹣
), 再把所得圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,得到函數(shù):y=sin(
x﹣
).
ω=
,φ=﹣
.
故選:C.
【考點(diǎn)精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對題目進(jìn)行判斷即可得到答案,需要熟知圖象上所有點(diǎn)向左(右)平移
個(gè)單位長度,得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的
倍(橫坐標(biāo)不變),得到函數(shù)
的圖象.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】抽樣統(tǒng)計(jì)甲、乙兩名學(xué)生的5次訓(xùn)練成績(單位:分),結(jié)果如下:
學(xué)生 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
甲 | 65 | 80 | 70 | 85 | 75 |
乙 | 80 | 70 | 75 | 80 | 70 |
則成績較為穩(wěn)定(方差較小)的那位學(xué)生成績的方差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足
,
則稱函數(shù)f(x)是[a,b]上的“中值函數(shù)”.已知函數(shù)
是[0,m]上的“中值函數(shù)”,則實(shí)數(shù)m的取值范圍是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在一次射擊預(yù)選賽中,甲、乙兩人各射擊
次,兩人成績的條形統(tǒng)計(jì)圖如圖所示,則下列四個(gè)選項(xiàng)中判斷不正確的是( )
![]()
A. 甲的成績的平均數(shù)小于乙的成績的平均數(shù)
B. 甲的成績的中位數(shù)小于乙的成績的中位數(shù)
C. 甲的成績的方差大于乙的成績的方差
D. 甲的成績的極差小于乙的成績的極差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量
,
,
滿足|
|=
,|
|=1,
=﹣1,且
﹣
與
﹣
的夾角為
,則|
|的最大值為( )
A.![]()
B.2 ![]()
C.![]()
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
:
過點(diǎn)
的直線交拋物線
于
兩點(diǎn),設(shè)![]()
(1)若點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
,求證:直線
經(jīng)過拋物線
的焦點(diǎn)
;
(2)若
求當(dāng)
最大時(shí),直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P在圓柱OO1的底面⊙O上,
分別為⊙O、⊙O1的直徑,且
平面
.
![]()
(1)求證:
;
(2)若圓柱
的體積
,
①求三棱錐A1﹣APB的體積.
②在線段AP上是否存在一點(diǎn)M,使異面直線OM與
所成角的余弦值為
?若存在,請指出M的位置,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱臺(tái)ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,AB=AA1=2A1B1=2. (Ⅰ)若M為CD中點(diǎn),求證:AM⊥平面AA1B1B;
(Ⅱ)求直線DD1與平面A1BD所成角的正弦值.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com