【題目】給出下列函數:
①y=x+
;
②y=lgx+logx10(x>0,x≠1);
③y=sinx+
(0<x≤
);
④y=
;
⑤y=
(x+
)(x>2).
其中最小值為2的函數序號是 .
【答案】③⑤
【解析】解:①y=x+
,當x>0時,y有最小值2;x<0時,有最大值﹣2;②y=lgx+logx10(x>0,x≠1),x>1時,有最小值2;0<x<1時,有最大值﹣2;
③y=sinx+
(0<x≤
),t=sinx(0<t≤1),y=t+
≥2
=2,x=
最小值取得2,成立;
④y=
=
+
,t=
(t≥
),y=t+
遞增,t=
時,取得最小值
;
⑤y=
(x+
)(x>2)=
(x﹣2+
+2)≥
(2
+2)=2,x=3時,取得最小值2.
所以答案是:③⑤.
【考點精析】通過靈活運用函數的最值及其幾何意義,掌握利用二次函數的性質(配方法)求函數的最大(小)值;利用圖象求函數的最大(小)值;利用函數單調性的判斷函數的最大(小)值即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖所示,△ABC中,已知頂點A(3,﹣1),∠B的內角平分線方程是x﹣4y+10=0過點C的中線方程為6x+10y﹣59=0.求頂點B的坐標和直線BC的方程. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}滿足an+1+an=4n﹣3(n∈N*)
(Ⅰ)若{an}是等差數列,求其通項公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項和,求S2n+1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓
:
,其左右焦點為
及
,過點
的直線交橢圓
于
,
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
,
兩點,且
、
、
構成等差數列.
![]()
(1)求橢圓
的方程;
(2)記
的面積為
,
(
為原點)的面積為
.試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
的一條對稱軸為
,且最高點的縱坐標是
.
(1)求
的最小值及此時函數
的最小正周期、初相;
(2)在(1)的情況下,設
,求函數
在
上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合M={1,2,3,4,5,6,7,8,9,10,11,12},以下命題正確的序號是 .
①如果函數f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),其中ai∈M(i=1,2,3,…,7),那么f′(0)的最大值為127 .
②數列{an}滿足首項a1=2,ak+12﹣ak2=2,k∈N* , 當n∈M且n最大時,數列{an}有2048個.
③數列{an}(n=1,2,3,…,8)滿足a1=5,a8=7,|ak+1﹣ak|=2,k∈N* , 如果數列{an}中的每一項都是集合M的元素,則符合這些條件的不同數列{an}一共有33個.
④已知直線amx+any+ak=0,其中am , an , ak∈M,而且am<an<ak , 則一共可以得到不同的直線196條.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知矩形
和菱形
所在平面互相垂直,如圖,其中
,
,
,點
為線段
的中點.
(Ⅰ)試問在線段
上是否存在點
,使得直線
平面
?若存在,請證明
平面
,并求出
的值,若不存在,請說明理由;
(Ⅱ)求二面角
的正弦值.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com