(本小題共14分)已知橢圓
的左、右焦點(diǎn)分別為
,
,
點(diǎn)
是橢圓的一個(gè)頂點(diǎn),△
是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)
分別作直線
,
交橢圓于
,
兩點(diǎn),設(shè)兩直線的斜率分別為
,
,且
,證明:直線
過定點(diǎn)(
).
(Ⅰ)
.
(Ⅱ)直線
過定點(diǎn)(
).
【解析】本試題主要是考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。
(1)利用橢圓的性質(zhì)得到關(guān)于系數(shù)a,b,c的關(guān)系式,然后求解得到橢圓的方程。
(2)對(duì)于直線斜率是否存在進(jìn)行分類討論,然后設(shè)出直線與橢圓聯(lián)立方程組,借助于韋達(dá)定理和斜率的關(guān)系式得到直線恒過定點(diǎn)。
解:(Ⅰ)由已知可得
,
所求橢圓方程為
.
………5分
(Ⅱ)若直線
的斜率存在,設(shè)
方程為
,依題意
.
設(shè)
,
,
由
得
.
則
.
………8分
由已知
,所以
,
即
.
………10分
所以
,整理得
.
故直線
的方程為
,即
(
)
.
所以直線
過定點(diǎn)(
).
………12分
若直線
的斜率不存在,設(shè)
方程為
,
設(shè)
,
, 由已知
,
得
.此時(shí)
方程為
,顯然過點(diǎn)(
).
綜上,直線
過定點(diǎn)(
).
………14分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年北京卷文)(本小題共14分)
已知
的頂點(diǎn)
在橢圓
上,
在直線
上,且
.
(Ⅰ)當(dāng)
邊通過坐標(biāo)原點(diǎn)
時(shí),求
的長及
的面積;
(Ⅱ)當(dāng)
,且斜邊
的長最大時(shí),求
所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
已知雙曲線
的離心率為
,右準(zhǔn)線方程為![]()
(Ⅰ)求雙曲線
的方程;(Ⅱ)設(shè)直線
是圓
上動(dòng)點(diǎn)
處的切線,
與雙曲線
交于不同的兩點(diǎn)
,證明
的大小為定值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市宣武區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(本小題共14分)
已知
,動(dòng)點(diǎn)
到定點(diǎn)![]()
的距離比
到定直線
的距離小
.
(I)求動(dòng)點(diǎn)
的軌跡
的方程;
(Ⅱ)設(shè)
是軌跡
上異于原點(diǎn)
的兩個(gè)不同點(diǎn),
,求
面積的最小值;
(Ⅲ)在軌跡
上是否存在兩點(diǎn)
關(guān)于直線
對(duì)稱?若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年普通高中招生考試北京市高考理科數(shù)學(xué) 題型:解答題
((本小題共14分)
已知橢圓
.過點(diǎn)(m,0)作圓
的切線l交橢圓G于A,B兩點(diǎn).
(I)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(II)將
表示為m的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市豐臺(tái)區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題共14分)
已知點(diǎn)
,
,動(dòng)點(diǎn)P滿足
,記動(dòng)點(diǎn)P的軌跡為W.
(Ⅰ)求W的方程;
(Ⅱ)直線
與曲線W交于不同的兩點(diǎn)C,D,若存在點(diǎn)
,使得
成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com