【題目】如圖,在四棱錐
中,四邊形
是直角梯形,
,
,
底面
,
,
,
是
的中點.
![]()
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】函數f(x)=2sin(2x+
),g(x)=mcos(2x﹣
)﹣2m+3(m>0),若對任意x1∈[0,
],存在x2∈[0,
],使得g(x1)=f(x2)成立,則實數m的取值范圍是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓
與圓
:
相切,且與圓
:
相內切,記圓心
的軌跡為曲線
.設
為曲線
上的一個不在
軸上的動點,
為坐標原點,過點
作
的平行線交曲線
于
,
兩個不同的點.
(Ⅰ)求曲線
的方程;
(Ⅱ)試探究
和
的比值能否為一個常數?若能,求出這個常數,若不能,請說明理由;
(Ⅲ)記
的面積為
,
的面積為
,令
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.
(1)若α=β,則sin α=sin β;
(2)若對角線相等,則梯形為等腰梯形;
(3)已知a,b,c,d都是實數,若a=b,c=d,則a+c=b+d.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(ω>0,0<φ<
)的部分圖象如圖所示. ![]()
(1)求f(x)的解析式;
(2)將函數y=f(x)的圖象上所有點的縱坐標不變,橫坐標縮短為原來的
倍,再將所得函數圖象向右平移
個單位,得到函數y=g(x)的圖象,求g(x)的單調遞增區間;
(3)當x∈[﹣
,
]時,求函數y=f(x+
)﹣
f(x+
)的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在10件產品中,有3件一等品,4件二等品,3件三等品。從這10件產品中任取3件,求:
(I) 取出的3件產品中一等品件數X的分布列和數學期望;
(II) 取出的3件產品中一等品件數多于二等品件數的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的短軸長為
,右焦點為
,點
是橢圓
上異于左、右頂點
的一點.
(1)求橢圓
的方程;
(2)若直線
與直線
交于點
,線段
的中點為
,證明:點
關于直線
的對稱點在直線
上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一個古典型(或幾何概型)中,若兩個不同隨機事件
、
概率相等,則稱
和
是“等概率事件”,如:隨機拋擲一枚骰子一次,事件“點數為奇數”和“點數為偶數”是“等概率事件”,關于“等概率事件”,以下判斷正確的是__________.
①在同一個古典概型中,所有的基本事件之間都是“等概率事件”;
②若一個古典概型的事件總數為大于2的質數,則在這個古典概型中除基本事件外沒有其他“等概率事件”;③因為所有必然事件的概率都是1,所以任意兩個必然事件是“等概率事件”;
④隨機同時拋擲三枚硬幣一次,則事件“僅有一個正面”和“僅有兩個正面”是“等概率事件”.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com