證明
時,假設當
時成立,則當![]()
時,左邊增加的項數為(
)
A.
B.![]()
C.
D.![]()
科目:高中數學 來源:2013屆內蒙古巴彥淖爾市中學高二下期中理科數學試卷(解析版) 題型:選擇題
對于不等式
某同學應用數學歸納法證明的過程如下:
(1)當
時,
,不等式成立
(2)假設
時,不等式成立,即![]()
那么
時,
![]()
不等式成立根據(1)(2)可知,對于一切正整數
不等式都成立。上述證明方法( )
A.過程全部正確 B.
驗證不正確
C.歸納假設不正確 D.從
到
的推理不正確
查看答案和解析>>
科目:高中數學 來源:2013屆江西省高二下學期期中考試理科數學試卷(解析版) 題型:解答題
已知
,(其中
)
⑴求
及
;
⑵試比較
與
的大小,并說明理由.
【解析】第一問中取
,則
;
…………1分
對等式兩邊求導,得![]()
取
,則
得到結論
第二問中,要比較
與
的大小,即比較:
與
的大小,歸納猜想可得結論當
時,
;
當
時,
;
當
時,
;
猜想:當
時,
運用數學歸納法證明即可。
解:⑴取
,則
;
…………1分
對等式兩邊求導,得
,
取
,則
。 …………4分
⑵要比較
與
的大小,即比較:
與
的大小,
當
時,
;
當
時,
;
當
時,
;
…………6分
猜想:當
時,
,下面用數學歸納法證明:
由上述過程可知,
時結論成立,
假設當
時結論成立,即
,
當
時,![]()
而![]()
∴![]()
即
時結論也成立,
∴當
時,
成立。
…………11分
綜上得,當
時,
;
當
時,
;
當
時,
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三第五次階段考試理科數學試卷(解析版) 題型:解答題
已知數列
的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項公式;
(Ⅱ) 設
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數列的通項公式的求解和運用。運用
關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結論。
解:(Ⅰ)當
時,由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設
,
,
則
.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數學歸納法)①當
時,
,命題成立;
②假設
時,命題成立,即
,
則當
時,![]()
![]()
即![]()
即![]()
故當
時,命題成立.
綜上可知,對一切非零自然數
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com