數(shù)列{an}是公比為
的等比數(shù)列,且1-a2是a1與1+a3的等比中項(xiàng),前n項(xiàng)和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項(xiàng)和Tn滿足Tn=n
·bn+1(
為常數(shù),且
≠1).
(I)求數(shù)列{an}的通項(xiàng)公式及
的值;
(Ⅱ)比較
+
+
+ +
與
Sn的大小.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}中,首項(xiàng)a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足bn=
,其前n項(xiàng)和為Sn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若S2為S1,Sm (m∈N*)的等比中項(xiàng),求正整數(shù)m的值.
(3)對(duì)任意正整數(shù)k,將等差數(shù)列{an}中落入?yún)^(qū)間(2k,22k)內(nèi)項(xiàng)的個(gè)數(shù)記為ck,求數(shù)列{cn}的前n項(xiàng)和Tn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在等差數(shù)列{
}中,
=3,前7項(xiàng)和
=28.
(I)求數(shù)列{
}的公差d;
(II)若數(shù)列{
}為等比數(shù)列,且
,
求數(shù)列
的前n項(xiàng)和![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知無(wú)窮數(shù)列
中,
、
、
、
構(gòu)成首項(xiàng)為2,公差為-2的等差數(shù)列,
、
、
、
,構(gòu)成首項(xiàng)為
,公比為
的等比數(shù)列,其中
,
.
(1)當(dāng)
,
,時(shí),求數(shù)列
的通項(xiàng)公式;
(2)若對(duì)任意的
,都有
成立.
①當(dāng)
時(shí),求
的值;
②記數(shù)列
的前
項(xiàng)和為
.判斷是否存在
,使得
成立?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
的前n項(xiàng)和為Sn,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)令
,記數(shù)列
的前
項(xiàng)和為
.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
為數(shù)列
的前
項(xiàng)和,對(duì)任意的
,都有
(
為正常數(shù)).
(1)求證:數(shù)列
是等比數(shù)列;
(2)數(shù)列
滿足
求數(shù)列
的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列
的公差
,它的前
項(xiàng)和為
,若
,且
成等比數(shù)列.(1) 求數(shù)列
的通項(xiàng)公式;(2)設(shè)數(shù)列
的前
項(xiàng)和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列
滿足:
,
的前
項(xiàng)和為
。
(1)求
及
;
(2)令
(其中
為常數(shù),且
),求證數(shù)列
為等比數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{
}滿足
=3,
=
。設(shè)
,證明數(shù)列{
}是等差數(shù)列并求通項(xiàng)
。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com