【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若
恒成立,試確定實(shí)數(shù)
的取值范圍;
(3)證明:
.
【答案】(1)見解析;(2)
;(3)見解析.
【解析】試題分析:(1)對函數(shù)
求導(dǎo)得
,對
進(jìn)行分類討論,即可得到函數(shù)的單調(diào)區(qū)間;(2)由(1)可得,
時(shí),
在
上是增函數(shù),而
,
不成立,故
,由(1)可得
,即可求出
的取值范圍;(3)由(2)知,當(dāng)
時(shí),有
在
恒成立,即
,進(jìn)而換元可得
,所以
,即可得證.
試題解析:(1)定義域?yàn)?/span>
, ![]()
若
,
,
在
上單調(diào)遞增
若
,
,
所以,當(dāng)
時(shí),
,當(dāng)
時(shí), ![]()
綜上:若
,
在
上單調(diào)遞增;
若
,
在
上單調(diào)遞增,在
上單調(diào)遞減
(2)由(1)知,
時(shí),
不可能成立;
若
,
恒成立
,
,得![]()
綜上,
.
(3)由(2)知,當(dāng)
時(shí),有
在
上恒成立,即![]()
令
,得
,即![]()
,得證.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是菱形,
,
平面
,
,
,
,
是
中點(diǎn).
(I)求證:直線
平面
.
(II)求證:直線
平面
.
(III)在
上是否存在一點(diǎn)
,使得二面角
的大小為
,若存在,確定
的位置,若不存在,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在實(shí)常數(shù)
和
,使得函數(shù)
和
對其定義域上的任意實(shí)數(shù)
分別滿足:
和
,則稱直線
為
和
的“隔離直線”.已知
,
為自然對數(shù)的底數(shù)).
(1)求
的極值;
(2)函數(shù)
和
是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在R上的奇函數(shù),當(dāng)x≥0,f(x)=log3(x+3)﹣a,則不等式|f(x)|<1的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求曲線
在點(diǎn)
處的切線方程;(2)求函數(shù)
在
上的最大值;
(3)求證:存在唯一的
,使得
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:
,q:x2﹣2x+1﹣m2≤0(m>0).若¬p是¬q的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘭州一中在世界讀書日期間開展了“書香校園”系列讀書教育活動(dòng)。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對其課外閱讀時(shí)間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書迷”,低于60分鐘的學(xué)生稱為“非讀書迷”。
非讀書迷 | 讀書迷 | 合計(jì) | |
男 | 15 | ||
女 | 45 |
![]()
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書迷”與性別有關(guān)?
(2)利用分層抽樣從這100名學(xué)生的“讀書迷”中抽取8名進(jìn)行集訓(xùn),從中選派2名參加蘭州市讀書知識比賽,求至少有一名男生參加比賽的概率。
附: ![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
:
過橢圓
:
(
)的短軸端點(diǎn),
,
分別是圓
與橢圓
上任意兩點(diǎn),且線段
長度的最大值為3.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
作圓
的一條切線交橢圓
于
,
兩點(diǎn),求
的面積的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com