【題目】設
、
是橢圓
的左、右頂點,
為橢圓上異于
、
的一點.
(1)
是橢圓
的上頂點,且直線
與直線
垂直,求點
到
軸的距離;
(2)過點
的直線
(不過坐標原點)與橢圓
交于
、
兩點,且點
在
軸上方,點
在
軸下方,若
,求直線
的斜率.
科目:高中數學 來源: 題型:
【題目】在貫徹中共中央、國務院關于精準扶貧政策的過程中,某單位在某市定點幫扶甲、乙兩村各
戶貧困戶.為了做到精準幫扶,工作組對這
戶村民的年收入情況、勞動能力情況.子女受教育情況、危舊房情況、患病情況等進行調查.并把調查結果轉化為各戶的貧困指標
.將指標
按照
,
,
,
,
分成五組,得到如圖所示的頻率分布直方圖.規定若
,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”,且當
時,認定該戶為“低收入戶”;當
時,認定該戶為“亟待幫助戶".已知此次調查中甲村的“絕對貧困戶”占甲村貧困戶的
.
![]()
(1)完成下面的列聯表,并判斷是否有
的把握認為絕對貧困戶數與村落有關:
甲村 | 乙村 | 總計 | |
絕對貧困戶 | |||
相對貧困戶 | |||
總計 |
(2)某干部決定在這兩村貧困指標處于
的貧困戶中,隨機選取
戶進行幫扶,用
表示所選
戶中“亟待幫助戶”的戶數,求
的分布列和數學期望
.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統計了活動剛推出一周內每一天使用掃碼支付的人次,用
表示活動推出的天數,
表示每天使用掃碼支付的人次(單位:十人次),統計數據如表1所示:
表一
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據以上數據,繪制了如下圖所示的散點圖.
![]()
(1)根據散點圖判斷,在推廣期內,
與
(
,
均為大于零的常數)哪一個適宜作為掃碼支付的人次
關于活動推出天數
的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(1)的判斷結果及表1中的數據,求
關于
的回歸方程,并預測活動推出第8天使用掃碼支付的人次;
(3)推廣期結束后,車隊對乘客的支付方式進行統計,結果如表2
表2
支付方式 | 現金 | 乘車卡 | 掃碼 |
比例 | 10% | 60% | 30% |
已知該線路公交車票價為2元,使用現金支付的乘客無優惠,使用乘車卡支付的乘客享受8折優惠,掃碼支付的乘客隨機優惠,根據統計結果得知,使用掃碼支付的乘客,享受7折優惠的概率為
,享受8折優惠的概率為
,享受9折優惠的概率為
.根據所給數據以事件發生的頻率作為相應事件發生的概率,估計一名乘客一次乘車的平均費用.
參考數據:
|
|
|
|
|
62.14 | 1.54 | 2535 | 50.12 | 3.47 |
其中
,![]()
參考公式:對于一組數據
,
,……
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了了解全校學生“體能達標”的情況,從全校1000名學生中隨機選出40名學生,參加“體能達標”預測,并且規定“體能達標”預測成績小于60分的為“不合格”,否則為“合格”若該校“不合格”的人數不超過總人數的
,則全校“體能達標”為“合格”;否則該校“體能達標”為“不合格”,需要重新對全校學生加強訓練現將這40名學生隨機分為甲、乙兩個組,其中甲組有24名學生,乙組有16名學生經過預測后,兩組各自將預測成績統計分析如下:甲組的平均成績為70,標準差為4;乙組的平均成績為80,標準差為6(題中所有數據的最后結果都精確到整數).
(1)求這40名學生測試成績的平均分
和標準差
;
(2)假設該校學生的“體能達標”預測服從正態分布
用樣本平均數
作為
的估計值
,用樣本標準差
作為
的估計值
.利用估計值估計:該校學生“體能達標”預測是否“合格”?
附:①
個數
的平均數
,方差
;
②若隨機變量
服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】空氣質量AQI指數是反映空氣質量狀況指數,AQI指數值越小,表明空氣質量越好,其對應關系如表:
AQI指數值 |
|
|
|
|
|
|
空氣質量 | 優 | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
如圖所示的是某市11月1日至20日AQI指數變化的折線圖:
![]()
下列說法不正確的是( )
A.這
天中空氣質量為輕度污染的天數占![]()
B.這
天中空氣質量為優和良的天數為
天
C.這
天中AQI指數值的中位數略低于![]()
D.總體來說,該市11月上旬的空氣質量比中旬的空氣質量好
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保障某治療新冠肺炎藥品的主要藥理成分在國家藥品監督管理局規定的值范圍內,武漢某制藥廠在該藥品的生產過程中,檢驗員在一天中按照規定從該藥品生產線上隨機抽取20件產品進行檢測,測量其主要藥理成分含量(單位:mg).根據生產經驗,可以認為這條藥品生產線正常狀態下生產的產品的主要藥理成分含量服從正態分布N(μ,σ2).在一天內抽取的20件產品中,如果有一件出現了主要藥理成分含量在(μ﹣3σ,μ+3σ)之外的藥品,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對本次的生產過程進行檢查.
(1)下面是檢驗員在2月24日抽取的20件藥品的主要藥理成分含量:
10.02 | 9.78 | 10.04 | 9.92 | 10.14 | 10.04 | 9.22 | 10.13 | 9.91 | 9.95 |
10.09 | 9.96 | 9.88 | 10.01 | 9.98 | 9.95 | 10.05 | 10.05 | 9.96 | 10.12 |
經計算得
xi=9.96,s
0.19;其中xi為抽取的第i件藥品的主要藥理成分含量,i=1,2,…,20.用樣本平均數
作為μ的估計值
,用樣本標準差s作為σ的估計值
,利用估計值判斷是否需對本次的生產過程進行檢查?
(2)假設生產狀態正常,記X表示某天抽取的20件產品中其主要藥理成分含量在(μ﹣3σ,μ+3σ)之外的藥品件數,求/span>P(X=1)及X的數學期望.
附:若隨機變量Z服從正態分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)≈0.9974,0.997419≈0.95.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)
,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,則實數a的取值范圍是( )
A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為a元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
| 上一年度未發生有責任道路交通事故 | 下浮10% |
| 上兩年度未發生有責任道路交通事故 | 下浮 |
| 上三年度未發生有責任道路交通事故 | 下浮30% |
| 上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% |
| 上一個年度發生兩次及兩次以上有責任不涉及死亡的道路交通事故 | 上浮10% |
| 上一個年度發生有責任交通死亡事故 | 上浮30% |
某機構為了解某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定,
,記
為某同學家的一輛該品牌車在第四年續保時的費用,求
的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com