【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線
在平面直角坐標(biāo)系
下的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線
的普通方程及極坐標(biāo)方程;
(2)直線
的極坐標(biāo)方程是
,射線
:
與曲線
交于點(diǎn)
與直線
交于點(diǎn)
,求線段
的長(zhǎng).
【答案】(1)
,
;(2)
.
【解析】試題分析:(1)利用
可消去參數(shù),經(jīng)圓的參數(shù)方程化為普通方程.令
,可將圓的普通方程化為極坐標(biāo)方程.(2)將
分別代入直線的極坐標(biāo)方程和圓的極坐標(biāo)方程,可求得
兩點(diǎn)對(duì)應(yīng)的
的值,兩者作差即可求得
的長(zhǎng).
試題解析:(1)因?yàn)榍
的參數(shù)方程為
(
為參數(shù)),
消去參數(shù)
得曲線
的普通方程為
,
又
,
,
∴曲線
的極坐標(biāo)方程為
.
(2)由
,
故射線
與曲線
的交點(diǎn)
的極坐標(biāo)為
;
由
,
故射線
與直線
的交點(diǎn)
的極坐標(biāo)為
,
∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2015高考四川,文21】已知函數(shù)f(x)=-2lnx+x2-2ax+a2,其中a>0.
(Ⅰ)設(shè)g(x)為f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大西洋鮭魚(yú)每年都要逆流而上,游回產(chǎn)地產(chǎn)卵.記鮭魚(yú)的游速為
,鮭魚(yú)的耗氧量的單位數(shù)為
,研究中發(fā)現(xiàn)
與
成正比,且當(dāng)
時(shí),
.
(1)求出
關(guān)于
的函數(shù)解析式;
(2)計(jì)算一條鮭魚(yú)的游速是
時(shí)耗氧量的單位數(shù);
(3)當(dāng)鮭魚(yú)的游速增加
時(shí),其耗氧量是原來(lái)的幾倍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為
元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就是越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
| 上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
| 上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
| 上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
| 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
| 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
| 上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了 某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類(lèi)型 |
|
|
|
|
|
|
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:
(1)按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車(chē)交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,
,記
為某同學(xué)家的一輛該品牌車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求
的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē),假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事故車(chē)盈利10000元:
①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿三年)該品牌二手車(chē),求這三輛車(chē)中至多有一輛事故車(chē)的概率;
②若該銷(xiāo)售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿三年)該品牌二手車(chē),求他獲得利潤(rùn)的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,底面
是直角梯形,
,
,
,側(cè)面
底面
,且
是以
為底的等腰三角形.
(Ⅰ)證明:![]()
(Ⅱ)若四棱錐
的體積等于
.問(wèn):是否存在過(guò)點(diǎn)
的平面
分別交
,
于點(diǎn)
,使得平面
平面
?若存在,求出
的面積;若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
與圓C:
相交于A,B兩點(diǎn),弦AB中點(diǎn)為M(0,1),
(1)求實(shí)數(shù)
的取值范圍以及直線
的方程;
(2)若圓C上存在四個(gè)點(diǎn)到直線
的距離為
,求實(shí)數(shù)a的取值范圍;
(3)已知N(0,﹣3),若圓C上存在兩個(gè)不同的點(diǎn)P,使
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)![]()
.
(1)求![]()
在![]()
處的切線方程;
(2)令![]()
,求![]()
的單調(diào)區(qū)間;
(3)若任意![]()
且![]()
,都有![]()
恒成立,求實(shí)數(shù)![]()
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若定義在R上的函數(shù)
滿足
,且當(dāng)
時(shí),
,則函數(shù)
在區(qū)間[-7,1]上的零點(diǎn)個(gè)數(shù)為( )
A. 4 B. 6 C. 8 D. 10
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com