【題目】已知橢圓
的四個(gè)頂點(diǎn)組成的四邊形的面積為
,且經(jīng)過點(diǎn)
.
![]()
(1)求橢圓
的方程;
(2)若橢圓
的下頂點(diǎn)為
,如圖所示,點(diǎn)
為直線
上的一個(gè)動(dòng)點(diǎn),過橢圓
的右焦點(diǎn)
的直線
垂直于
,且與
交于
兩點(diǎn),與
交于點(diǎn)
,四邊形
和
的面積分別為
.求
的最大值.
【答案】(1)
(2)![]()
【解析】
試題分析:(1)由橢圓幾何條件得橢圓四個(gè)頂點(diǎn)組成的四邊形為菱形,其面積為
,又
在橢圓
上,所以
,解方程組得
(2)先確定面積計(jì)算方法:
,
,再確定計(jì)算方向:設(shè)
根據(jù)兩點(diǎn)間距離公式求OM,根據(jù)兩直線交點(diǎn)求N點(diǎn)橫坐標(biāo),再根據(jù)直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理求弦長AB,最后根據(jù)
表達(dá)式形式,確定求最值方法(基本不等式求最值)
試題解析:(1)因?yàn)?/span>
在橢圓
上,所以
,
又因?yàn)闄E圓四個(gè)頂點(diǎn)組成的四邊形的面積為
,所以
,
解得
,所以橢圓
的方程為
.
(2)由(1)可知
,設(shè)
,
則當(dāng)
時(shí),
,所以
,
直線
的方程為
,即
,
由
得
,
則
,
,
,
又
,所以
,
由
,得
,所以
,
所以
,
當(dāng)
時(shí),直線
,
所以當(dāng)
時(shí),
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)
是拋物線
上異于原點(diǎn)
的一點(diǎn),過點(diǎn)
作斜率為
、
的兩條直線分別交
于
、
兩點(diǎn)(
、
、
三點(diǎn)互不相同).
(1)已知點(diǎn)
,求
的最小值;
(2)若
,直線
的斜率是
,求
的值;
(3)若
,當(dāng)
時(shí),
點(diǎn)的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1至9這9個(gè)自然數(shù)中任取兩個(gè):
恰有一個(gè)偶數(shù)和恰有一個(gè)奇數(shù);
至少有一個(gè)是奇數(shù)和兩個(gè)數(shù)都是奇數(shù);
至多有一個(gè)奇數(shù)和兩個(gè)數(shù)都是奇數(shù);
至少有一個(gè)奇數(shù)和至少有一個(gè)偶數(shù).
在上述事件中,是對立事件的是
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
![]()
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)為
,離心率為
,過橢圓的右焦點(diǎn)F的直線l與坐標(biāo)軸不垂直,且交橢圓于A,B兩點(diǎn).
求橢圓的方程;
設(shè)點(diǎn)C是點(diǎn)A關(guān)于x軸的對稱點(diǎn),在x軸上是否存在一個(gè)定點(diǎn)N,使得C,B,N三點(diǎn)共線?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由;
設(shè)
,是線段
為坐標(biāo)原點(diǎn)
上的一個(gè)動(dòng)點(diǎn),且
,求m的取值范圍.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)
,點(diǎn)
,
為拋物線上一點(diǎn),且
不在直線
上,則
周長取最小值時(shí),線段
的長為( )
A. 1B.
C. 5D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐
中,
平面
,
,
,
,
為
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)設(shè)二面角
為
,
,
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓C的方程為ρ=4cosθ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l經(jīng)過點(diǎn)M(5,6),且斜率為
.
(1)求圓 C的平面直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)若直線l與圓C交于A,B兩點(diǎn),求|MA|+|MB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘭州一中在世界讀書日期間開展了“書香校園”系列讀書教育活動(dòng)。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對其課外閱讀時(shí)間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書迷”,低于60分鐘的學(xué)生稱為“非讀書迷”。
非讀書迷 | 讀書迷 | 合計(jì) | |
男 | 15 | ||
女 | 45 |
![]()
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書迷”與性別有關(guān)?
(2)利用分層抽樣從這100名學(xué)生的“讀書迷”中抽取8名進(jìn)行集訓(xùn),從中選派2名參加蘭州市讀書知識(shí)比賽,求至少有一名男生參加比賽的概率。
附: ![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com