【題目】已知函數f(x)=ax+b(a>0,a≠1)滿足f(x+y)=f(x)f(y),且f(3)=8.
(1)求實數a,b的值;
(2)若不等式|x﹣1|<m的解集為(b,a),求實數m的值.
科目:高中數學 來源: 題型:
【題目】將函數y=2cos(x﹣
)的圖象上所有的點的橫坐標縮短到原來的
倍(縱坐標不變),得到函數y=g(x)的圖象,則函數y=g(x)的圖象( )
A.關于點(﹣
,0)對稱
B.關于點(
,0)對稱
C.關于直線x=﹣
對稱
D.關于直線x=
對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設F1 , F2分別是橢圓
=1的左、右焦點.
(1)若M是該橢圓上的一點,且∠F1MF2=120°,求△F1MF2的面積;
(2)若P是該橢圓上的一個動點,求
的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的一個焦點與拋物線y2=8x的焦點重合,點
在C上.
(1)求橢圓C的方程;
(2)若橢圓C的一條弦被M(2,1)點平分,求這條弦所在的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A.如果兩條直線l1與l2垂直,那么它們的斜率之積一定等于﹣1
B.“a>0,b>0”是“
+
≥2”的充分必要條件
C.命題“若x=y,則sinx=siny”的逆否命題為真命題
D.“a≠﹣5或b≠5”是“a+b≠0”的充分不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
![]()
(1)求證:平面ABC⊥平面ACD;
(2)若E為AB中點,求點A到平面CED的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos2x+2sin2x+2sinx.
(1)將函數f(2x)的圖象向右平移
個單位得到函數g(x)的圖象,若x∈
,求函數g(x)的值域;
(2)已知a,b,c分別為△ABC中角A,B,C的對邊,且滿足f(A)=
+1,A∈
,a=2
,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}滿足:a1=1,an+1=3an , n∈N* . 設Sn為數列{bn}的前n項和,已知b1≠0,2bn﹣b1=S1Sn , n∈N*(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)設cn=bnlog3an , 求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD,
,PA=2,E是PC上的一點,PE=2EC.
(Ⅰ)證明:PC⊥平面BED;
(Ⅱ)設二面角A﹣PB﹣C為90°,求PD與平面PBC所成角的大小.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com