(1)若橢圓C上的點(diǎn)A(1,
)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值,試對(duì)雙曲線
=1寫出具有類似特性的性質(zhì),并加以證明.
21.
解:(1)橢圓C的焦點(diǎn)在x軸上.
由橢圓上的點(diǎn)A到F1、F2兩點(diǎn)的距離之和是4,得
又點(diǎn)A(1,
)在橢圓上,因此
=1得b2=3,于是c2=a2-b2=1.
所以橢圓C的方程為
=1,焦點(diǎn)F1(-1,0),F2(1,0).
(2)設(shè)橢圓C上的動(dòng)點(diǎn)為K(x1,y1),線段F1K的中點(diǎn)Q(x,y)滿足:
x=![]()
∴x1=2x+1,y1=2y,
因此
,
即(x+
)2+
=1為所求的軌跡方程.
(3)類似的性質(zhì)為:若M、N是雙曲線:
=1上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是雙曲線上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值.
設(shè)點(diǎn)M的坐標(biāo)為(m,n),則點(diǎn)N的坐標(biāo)為(-m,-n),其中
=1.
又設(shè)點(diǎn)P的坐標(biāo)為(x,y).
由kPM=
,kPN=
,
得kPM·kPN=
·
,
將y2=
-b2,n2=
m2-b2代入得kPM·kPN=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 2 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com