(本題滿分14分)
如圖,已知平面QBC與直線PA均垂直于
所在平面,且PA=AB=AC.![]()
(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若
,求二面角Q-PB-A的余弦值。
(1)通過已知中的平面
⊥平面
,那么結(jié)合
平面
,和
⊥平面
,從而得到線線平行
∥
,利用線面平行的性質(zhì)來證明。
(2) ![]()
解析試題分析:解:(I)證明:過點(diǎn)
作
于點(diǎn)
,![]()
∵平面
⊥平面
∴
平面![]()
又∵
⊥平面![]()
∴
∥
又∵
平面![]()
∴
∥平面
……6分
(Ⅱ)∵
平面![]()
∴
又∵![]()
∴
∴![]()
∴點(diǎn)
是
的中點(diǎn),連結(jié)
,則![]()
∴
平面
∴
∥
,![]()
∴四邊形
是矩形 ……8分
設(shè)![]()
∴
,
∴![]()
過
作
于點(diǎn)
,
∴
,![]()
取
中點(diǎn)
,連結(jié)
,取
的中點(diǎn)
,連結(jié)![]()
∵
,
∴
∥![]()
∵
∴
∴![]()
∴
為二面角
的平面角……12分
連結(jié)
,則
又∵![]()
∴![]()
即二面角
的余弦值為
……14分
方法二:
(I)同方法一 ……………………………………6分
(Ⅱ)∵
平面![]()
∴
,又∵![]()
∴
∴![]()
∴點(diǎn)
是
的中點(diǎn),連結(jié)
,則![]()
∴
平面
∴
∥
,![]()
∴四邊形![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在多面體
中,平面
∥平面
,
⊥平面
,
,
,
∥
.
且
,
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
∥平面
;
(Ⅲ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)如圖,在三棱錐S—ABC中,
是邊長為4的正三角形,平面SAC⊥平面ABC,SA =" SC" =
,M、N分別為AB、SB的中點(diǎn)。![]()
⑴ 求證:AC⊥SB;
⑵ 求二面角N—CM—B的正切值;
⑶ 求點(diǎn)B到平面CMN的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在如圖所示的四棱錐
中,已知 PA⊥平面ABCD,
,
,
,
為
的中點(diǎn).![]()
(1)求證:MC∥平面PAD;
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角
的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)如圖,在多面體ABCDEF中,底面ABCD是 平行四邊形,AB=2EF,EF∥AB,,H為BC的中點(diǎn).求證:FH∥平面EDB.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,菱形ABCD與矩形BDEF所在平面互相垂直,
.![]()
(1)求證:FC∥平面AED;
(2)若
,當(dāng)二面角
為直二面角時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在四棱錐
中,
,
,
平面
,
為
的中點(diǎn),
.![]()
(Ⅰ)求四棱錐
的體積
;
(Ⅱ)若
為
的中點(diǎn),求證:平面
平面
;
(Ⅲ)求二面角
的大小。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,四棱錐P--ABCD中,PB
底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點(diǎn)E在棱PA上,且PE=2EA.![]()
(1)求異面直線PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com