【題目】已知命題
:
表示雙曲線,命題
:
表示橢圓。
(1)若命題
與命題
都為真命題,則
是
的什么條件?
(請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個)
(2)若
為假命題,且
為真命題,求實數
的取值范圍.
【答案】(1)
是
的必要不充分條件(2)
或
。
【解析】試題分析:(1) 根據雙曲線的定義,若命題
為真命題則
,若
都為真命題則
或
,由
,可得
是
的必要不充分條件;(2)由
為假命題,且
為真命題,可得
一真一假,分兩種情況討論,對于
真
假以及
假
真分別列不等式組,分別解不等式組,然后求并集即可求得實數
的取值范圍..
試題解析:(1)∵命題
:
表示雙曲線是真命題,
∴
,
解得
,
又∵命題
:
表示橢圓是真命題,
∴
解得
或
∵
∴
是
的必要不充分條件,
(2)∵
為假命題,且
為真命題
∴
、
為“一真一假”,
當
真
假時,由(1)可知,
為真,有
,①
為假,
或
或
②
由①②解得
或
當
假真時,由(1)可知,
為假,有
或
,③
為真,有
或
④
由③④解得,無解
綜上,可得實數
的取值范圍為
或
.
科目:高中數學 來源: 題型:
【題目】設
分別為橢圓
的左右兩個焦點.
(1)若橢圓
上的點
到
兩點的距離之和等于4,寫出橢圓
的方程和焦點坐標;
(2)設點
是(1)中所得橢圓上的動點,求線段
的中點的軌跡方程;
(3)已知橢圓具有性質:如果
是橢圓
上關于原點對稱的兩個點,點
是橢圓上任意一點,當直線
的斜率都存在,并記為
時,那么
與
之積是與點
位置無關的定值,請給予證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}為等差數列,公差為d,且0<d<1,a5≠
(k∈Z),sin2a3+2sina5cosa5=sin2a7 , 函數f(x)=dsin(wx+4d)(w>0)滿足:在
上單調且存在
,則w范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨機擲兩枚質地均勻的骰子,它們向上的點數之和不超過5的概率記為p1,點數之和大于5的概率記為p2,點數之和為偶數的概率記為p3,則( )
A. p1<p2<p3 B. p2<p1<p3
C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x的函數
,其導函數
.
(1)如果函數
在x=1處有極值
試確定b、c的值;
(2)設當
時,函數
圖象上任一點P處的切線斜率為k,若
,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,x軸正半軸為極軸建立極坐標系.若曲線C的極坐標方程為ρcos2θ﹣4sinθ=0,P點的極坐標為
,在平面直角坐標系中,直線l經過點P,斜率為
(Ⅰ)寫出曲線C的直角坐標方程和直線l的參數方程;
(Ⅱ)設直線l與曲線C相交于A,B兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖下圖①,等邊三角形ABC的邊長為2a,CD是AB邊上的高,E,F分別是AC和BC邊上的點,且滿足
=k,現將△ABC沿CD翻折成直二面角ADCB,如圖下圖②.
(1)試判斷翻折后直線AB與平面DEF的位置關系,并說明理由;
(2)求二面角BACD的正切值.
①
②![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com