【題目】在貫徹中共中央、國務院關(guān)于精準扶貧政策的過程中,某單位在某市定點幫扶某村100戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標,將指標
按照
,
,
,
,
分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若
,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”;當
時,認定該戶為“亟待幫住戶”.
![]()
(1)為了更好的了解和幫助該村的這些貧困戶,決定用分層抽樣的方法從這100戶中隨機抽取20戶進行更深入的調(diào)查,求應該抽取“絕對貧困戶”的戶數(shù);
(2)從這20戶中任取3戶,求“絕對貧困戶”多于“相對貧困戶”的概率;
(3)現(xiàn)在從(1)中所抽取的“絕對貧困戶”中任取3戶,用
表示所選3戶中“亟待幫助戶”的戶數(shù),求
的分布列和數(shù)學期望
.
【答案】(1)6戶,(2)
,(3)分布列見解析,
.
【解析】
(1)根據(jù)頻數(shù)=樣本容量×頻率,可得結(jié)果;
(2)根據(jù)古典概型的概率公式可得結(jié)果;
(3)
的所有可能的取值為0,1,2,3,根據(jù)古典概型概率公式求出
的各個取值的概率可得分布列,根據(jù)數(shù)學期望公式可得數(shù)學期望的值.
(1)由直方圖可知,“絕對貧困戶”的頻率為
,
所以應該抽取“絕對貧困戶”的戶數(shù)為
戶.
(2)這20戶中,“絕對貧困戶”的戶數(shù)為6戶,“相對貧困戶”的戶數(shù)為14戶,
所以“絕對貧困戶”多于“相對貧困戶”的概率為![]()
.
(3)從(1)中所抽取的“絕對貧困戶”中,“亟待幫助戶”的戶數(shù)為3戶,
所以
的所有可能的取值為0,1,2,3.
,
,
,
,
所以
的分布列為:
| 0 | 1 | 2 | 3 |
|
|
|
|
|
![]()
![]()
.
科目:高中數(shù)學 來源: 題型:
【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設計師單獨設計出來的玩偶.由于盒子上沒有標注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經(jīng)濟”.某款盲盒內(nèi)可能裝有某一套玩偶的
、
、
三種樣式,且每個盲盒只裝一個.
(1)若每個盲盒裝有
、
、
三種樣式玩偶的概率相同.某同學已經(jīng)有了
樣式的玩偶,若他再購買兩個這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷售網(wǎng)點為調(diào)查該款盲盒的受歡迎程度,隨機發(fā)放了200份問卷,并全部收回.經(jīng)統(tǒng)計,有
的人購買了該款盲盒,在這些購買者當中,女生占
;而在未購買者當中,男生女生各占
.請根據(jù)以上信息填寫下表,并分析是否有
的把握認為購買該款盲盒與性別有關(guān)?
女生 | 男生 | 總計 | |
購買 | |||
未購買 | |||
總計 |
參考公式:
,其中
.
參考數(shù)據(jù):
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷售網(wǎng)點已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:
周數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
盒數(shù) | 16 | ______ | 23 | 25 | 26 | 30 |
由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點負責人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進行檢驗.
①請用4、5、6周的數(shù)據(jù)求出
關(guān)于
的線性回歸方程
;
(注:
,
)
②若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2盒,則認為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
③如果通過②的檢驗得到的回歸直線方程可靠,我們可以認為第2周賣出的盒數(shù)誤差也不超過2盒,請你求出第2周賣出的盒數(shù)的可能取值;如果不可靠,請你設計一個估計第2周賣出的盒數(shù)的方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓
經(jīng)過橢圓
的左右焦點
,與橢圓
在第一象限的交點為
,且
,
,
三點共線.
![]()
(1)求橢圓
的方程;
(2)設與直線
(
為原點)平行的直線交橢圓
于
兩點,當
的面積取取最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù)).以
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
(
),將曲線
向左平移2個單位長度得到曲線
.
(1)求曲線
的普通方程和極坐標方程;
(2)設直線
與曲線
交于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】謝爾賓斯三角形是一種分形,其具體操作是取一個實心的三角形沿三邊中點的連線,將它分成四個小三角形,去掉中間的那一個小三角形,然后對其余三個小三角形重復以上步驟,得到如下的系列圖稱之為謝爾賓斯:三角形.在第五個圖形中,若隨機的投入一個質(zhì)點,則質(zhì)點落入“空白”處的概率為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)
是定義在
上的奇函數(shù),且函數(shù)
為偶函數(shù),當
時,
,若
有三個零點,則實數(shù)
的取值集合是( )
A.
,
B.
,![]()
C.
,
D.
,![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,已知直線
的參數(shù)方程為
(
為參數(shù)),以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求直線
的普通方程和曲線
的直角坐標方程;
(2)設點
,直線
與曲線
的交點為
、
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓周率是圓的周長與直徑的比值,一般用字母
表示.我們可以通過設計一個試驗來估計
的值:從
表示的區(qū)域內(nèi)隨機抽取200個實數(shù)對
,其中x,y兩個數(shù)能與1構(gòu)成鈍角三角形三邊長的數(shù)對
共有56個.則用隨機模擬的方法估計
的近似值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖為國家統(tǒng)計局網(wǎng)站發(fā)布的《2018年國民經(jīng)濟和社會發(fā)展統(tǒng)計公報》中居民消費價格月度漲跌幅度的折線圖(注:同比是今年第
個月與去年第
個月之比,環(huán)比是現(xiàn)在的統(tǒng)計周期和上一個統(tǒng)計周期之比)
![]()
下列說法正確的是( )
①2018年6月CPI環(huán)比下降0.1%,同比上漲1.9%
②2018年3月CPI環(huán)比下降1.1%,同比上漲2.1%
③2018年2月CPI環(huán)比上漲0.6%,同比上漲1.4%
④2018年6月CPI同比漲幅比上月略微擴大1.9個百分點
A.①②B.③④C.①③D.②④.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com