【題目】某城市實施了機動車尾號限行,該市報社調查組為了解市區公眾對“車輛限行”的態度,隨機抽查了50人,將調查情況進行整理后制成下表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅰ)請估計該市公眾對“車輛限行”的贊成率和被調查者的年齡平均值;
(Ⅱ)若從年齡在[15,25),[25,35)的被調查者中各隨機選取兩人進行追蹤調查,記被選4人中不贊成“車輛限行”的人數為
,求隨機變量
的分布列和數學期望;
(Ⅲ)若在這50名被調查者中隨機發出20份的調查問卷,記
為所發到的20人中贊成“車輛限行”的人數,求使概率
取得最大值的整數
.
科目:高中數學 來源: 題型:
【題目】已知四棱柱ABCD﹣A1B1C1D1的側棱AA1⊥底面ABCD,ABCD是等腰梯形,AB∥DC,AB=2,AD=1,∠ABC=60°,E為A1C的中點 ![]()
(1)求證:D1E∥平面BB1C1C;
(2)求證:BC⊥A1C;
(3)若A1A=AB,求二面角A1﹣AC﹣B1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
f.
(1)如果函數
的單調遞減區間為
,求函數
的解析式;
(2)在(1)的條件下,求函數
的圖象在點
處的切線方程;
(3)若不等式
恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,點M和N分別是B1C1和BC的中點.
![]()
(1)求證:MB∥平面AC1N;
(2)求證:AC⊥MB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】AC為對稱軸的拋物線的一部分,點B到邊AC的距離為2km,另外兩邊AC,BC的長度分別為8km,2
km.現欲在此地塊內建一形狀為直角梯形DECF的科技園區. ![]()
(1)求此曲邊三角形地塊的面積;
(2)求科技園區面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x﹣
|,其在區間[0,1]上單調遞增,則a的取值范圍為( )
A.[0,1]
B.[﹣1,0]
C.[﹣1,1]
D.[﹣
,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
,已知曲線
在點
處的切線與直線
平行
(Ⅰ)求
的值;
(Ⅱ)是否存在自然數
,使得方程
在
內存在唯一的根?如果存在,求出
;如果不存在,請說明理由。
(Ⅲ)設函數
(
表示
中的較小者),求
的最大值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com