【題目】隨著電子閱讀的普及,傳統紙質媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質廣告收入如下表所示:
根據這9年的數據,對
和
作線性相關性檢驗,求得樣本相關系數的絕對值為0.243;
根據后5年的數據,對
和
作線性相關性檢驗,求得樣本相關系數的絕對值為0.984.
(1)如果要用線性回歸方程預測該雜志社2019年的紙質廣告收入,現在有兩個方案,
方案一:選取這9年數據進行預測,方案二:選取后5年數據進行預測.
從實際生活背景以及線性相關性檢驗的角度分析,你覺得哪個方案更合適?
附:相關性檢驗的臨界值表:
![]()
(2)某購物網站同時銷售某本暢銷書籍的紙質版本和電子書,據統計,在該網站購買該書籍的大量讀者中,只購買電子書的讀者比例為
,紙質版本和電子書同時購買的讀者比例為
,現用此統計結果作為概率,若從上述讀者中隨機調查了3位,求購買電子書人數多于只購買紙質版本人數的概率.
【答案】(1)選取方案二更合適;(2)![]()
【解析】
(1) 可以預見,2019年的紙質廣告收入會接著下跌,前四年的增長趨勢已經不能作為預測后續數據的依據,而后5年的數據得到的相關系數的絕對值
,所以有
的把握認為
與
具有線性相關關系,從而可得結論;(2)求得購買電子書的概率為
,只購買紙質書的概率為
,購買電子書人數多于只購買紙質書人數有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質書,由此能求出購買電子書人數多于只購買紙質版本人數的概率.
(1)選取方案二更合適,理由如下:
①題中介紹了,隨著電子閱讀的普及,傳統紙媒受到了強烈的沖擊,從表格中的數據中可以看出從2014年開始,廣告收入呈現逐年下降的趨勢,可以預見,2019年的紙質廣告收入會接著下跌,前四年的增長趨勢已經不能作為預測后續數據的依據.
②相關系數
越接近1,線性相關性越強,因為根據9年的數據得到的相關系數的絕對值
,我們沒有理由認為
與
具有線性相關關系;而后5年的數據得到的相關系數的絕對值
,所以有
的把握認為
與
具有線性相關關系.
(2) 因為在該網站購買該書籍的大量讀者中,只購買電子書的讀者比例為
,紙質版本和電子書同時購買的讀者比例為
,所以從該網站購買該書籍的大量讀者中任取一位,購買電子書的概率為
,只購買紙質書的概率為
, 購買電子書人數多于只購買紙質書人數有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質書.概率為:
.
科目:高中數學 來源: 題型:
【題目】(1)已知P是矩形ABCD所在平面上的一點,則有
.試證明該命題.
(2)將上述命題推廣到P為空間上任一點的情形,寫出這個推廣后的命題并加以證明.
(3)將矩形ABCD進一步推廣到長方體
,并利用(2)得到的命題建立并證明一個新命題.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
的左、右頂點分別為A,B,離心率為
,點P(1,
)為橢圓上一點.
![]()
(1)求橢圓C的標準方程;
(2)如圖,過點C(0,1)且斜率大于1的直線l與橢圓交于M,N兩點,記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修
:不等式選講
已知函數f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關于x的不等式f(x)≤|3m+1|有解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a1=1,a2=a,且an+1=k(an+an+2)對任意正整數n都成立,數列{an}的前n項和為Sn.
(1)若
,且S2019=2019,求a;
(2)是否存在實數k,使數列{an}是公比不為1的等比數列,且任意相鄰三項am,am+1,am+2按某順序排列后成等差數列,若存在,求出所有k的值;若不存在,請說明理由;
(3)若
,求Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國傳統文化中很多內容體現了數學的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現了相互轉化、對稱統一的形式美、和諧美,給出定義:能夠將圓O的周長和面積同時平分的函數稱為這個圓的“優美函數”,給出下列命題:
①對于任意一個圓O,其“優美函數”有無數個;
②函數f(x)=ln(
)可以是某個圓的“優美函數”;
③函數y=1+sinx可以同時是無數個圓的“優美函數”;
④函數y=2x+1可以同時是無數個圓的“優美函數”;
⑤函數y=f(x)是“優美函數”的充要條件為函數y=f(x)的圖象是中心對稱圖形.
其中正確的命題是_____.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com