【題目】已知函數(shù)
,當(dāng)且僅當(dāng)
,
時取到極值,且極大值比極小值大![]()
(1)求
,
值;
(2)求出
的極大值和極小值.
【答案】(1)
,
;(2)極大值
,極小值![]()
【解析】
(1)根據(jù)
求出極大值點和極小值點,由極值點處的導(dǎo)數(shù)值為0,可得
,再結(jié)合極大值比極小值大
建立關(guān)于
,
的方程,即可求出
,
值;
(2)根據(jù)第(1)問并結(jié)合
的單調(diào)性,即可求出函數(shù)
的極大值和極小值.
(1)因為
,所以
,
因為
和
是函數(shù)
的極值點,故
和
是方程
的兩個根,
所以
,所以
,
所以![]()
![]()
,
又函數(shù)
僅當(dāng)
,
取得極值,所以
,即
,
列表如下:
|
|
|
|
|
|
| + |
| - |
| + |
| ↗ | 極大值 | ↘ | 極小值 | ↗ |
因此,當(dāng)
時,函數(shù)
取得極大值
;
當(dāng)
時,函數(shù)
取得極大值
,
因為函數(shù)
的極大值比極小值大4,所以
,即
,
又
,解得
,
.
(2)由(1)知當(dāng)
時,函數(shù)
取得極大值
;
當(dāng)
時,函數(shù)
取得極大值
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,濟南公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用
表示活動推出的天數(shù),
表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表
所示:
![]()
根據(jù)以上數(shù)據(jù),繪制了散點圖.
![]()
(1)根據(jù)散點圖判斷,在推廣期內(nèi),
與
(
均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次
關(guān)于活動推出天數(shù)
的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表
中的數(shù)據(jù),建立
關(guān)于
的回歸方程,并預(yù)測活動推出第
天使用掃碼支付的 人次;
(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下
![]()
車隊為緩解周邊居民出行壓力,以
萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為
萬元.已知該線路公交車票價為
元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受
折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有
的概率享受
折優(yōu)惠,有
的概率享受
折優(yōu)惠,有
的概率享受
折優(yōu)惠.預(yù)計該車隊每輛車每個月有
萬人次乘車,根據(jù)給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標(biāo)準(zhǔn),假設(shè)這批車需要
年才能開始盈利,求
的值.
參考數(shù)據(jù):
![]()
其中其中![]()
參考公式:
對于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水產(chǎn)養(yǎng)殖戶在魚成熟時,隨機從網(wǎng)箱中捕撈100尾魚,其質(zhì)量分別在[4,4.5),[4.5.5),[5.5.5),[5.5,6),[6,6.5),[6.5,7](單位:斤)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示
![]()
(1)現(xiàn)按分層抽樣的方法,從質(zhì)量為[4.5,5),[5,5.5)的魚中隨機抽取5尾,再從這5尾中隨機抽取2尾,記隨機變量X表示質(zhì)量在[4.5,5)內(nèi)的魚的尾數(shù),求X的分布列及數(shù)學(xué)期望.
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,該養(yǎng)殖戶還未捕撈的魚大約還有1000尾,現(xiàn)有兩個方案:
方案一:所有剩余的魚現(xiàn)在賣出,質(zhì)量低于5.5斤的魚售價為每斤10元,質(zhì)量高于5.5斤的魚售價為每斤12元
方案二:一周后所有剩余的魚逢節(jié)日賣出,假設(shè)每尾魚的質(zhì)量不變,魚的數(shù)目不變,質(zhì)量低于5.5斤的魚售價為每斤15元,這類魚養(yǎng)殖一周的費用是平均每尾22元;質(zhì)量高于5.5斤的魚售價為每斤16元,這類魚養(yǎng)殖一周的費用是平均每尾24元通過計算確定水產(chǎn)養(yǎng)殖戶選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在實數(shù)集R上的奇函數(shù),且在區(qū)間
上是單調(diào)遞增,若
,則
的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的一段圖像如圖所示.
![]()
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在
上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
).
(1)若
為
的極值點,求實數(shù)
的值;
(2)若
在
上是單調(diào)增函數(shù),求實數(shù)
的取值范圍;
(3)當(dāng)
時,方程
有實根,求實數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
為常數(shù)).
(1)討論
的單調(diào)性;
(2)
是
的導(dǎo)函數(shù),若
存在兩個極值點
,求證:![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com