題目列表(包括答案和解析)
在
中,
,分別是角
所對邊的長,
,且![]()
(1)求
的面積;
(2)若
,求角C.
【解析】第一問中,由
又∵
∴
∴
的面積為![]()
第二問中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C為內角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
已知在
中,
,
,
,解這個三角形;
【解析】本試題主要考查了正弦定理的運用。由正弦定理得到:![]()
,然后又
![]()
又
再又
得到c。
解:由正弦定理得到:![]()
![]()
又
……4分
又
……8分
又
![]()
給出問題:已知
滿足
,試判定
的形狀.某學生的解答如下:
解:(i)由余弦定理可得,
,
![]()
,
![]()
,
故
是直角三角形.
(ii)設
外接圓半徑為
.由正弦定理可得,原式等價于![]()
![]()
,
故
是等腰三角形.
綜上可知,
是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果. .
已知函數
.]
(1)求函數
的最小值和最小正周期;
(2)設
的內角
、
、
的對邊分別為
,
,
,且
,
,
若
,求
,
的值.
【解析】第一問利用![]()
得打周期和最值
第二問
,由正弦定理,得
,①
由余弦定理,得
,即
,②
由①②解得![]()
設△ABC的內角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cosC=. (1)求△ABC的周長; (2)求cos(A-C)的值.
【解析】(1)借助余弦定理求出邊c,直接求周長即可.(2)根據兩角差的余弦公式需要求sinC,sinA,cosA,由正弦定理即可求出sinA,進而可求出cosA.sinC可由cosA求出,問題得解.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com