題目列表(包括答案和解析)
已知函數(shù)
,
.
(Ⅰ)若函數(shù)
依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實(shí)數(shù)
,使對任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在
處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。
第二問中,利用存在實(shí)數(shù)
,使對任意的
,不等式
恒成立轉(zhuǎn)化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
![]()
(2)不等式
,即
,即
.
轉(zhuǎn)化為存在實(shí)數(shù)
,使對任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
設(shè)
,則.![]()
設(shè)
,則
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有
.
故
在區(qū)間
上是減函數(shù)。又![]()
故存在
,使得
.
當(dāng)
時(shí),有
,當(dāng)
時(shí),有
.
從而
在區(qū)間
上遞增,在區(qū)間
上遞減.
又
[來源:]
![]()
所以當(dāng)
時(shí),恒有
;當(dāng)
時(shí),恒有![]()
;
故使命題成立的正整數(shù)m的最大值為5
已知點(diǎn)
(
),過點(diǎn)
作拋物線
的切線,切點(diǎn)分別為
、
(其中
).
(Ⅰ)若
,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)
為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線
的方程是
,且以點(diǎn)
為圓心的圓
與直線
相切,
求圓
面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。
中∵直線
與曲線
相切,且過點(diǎn)
,∴
,利用求根公式得到結(jié)論先求直線
的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線
的方程是
,
,且以點(diǎn)
為圓心的圓
與直線
相切∴點(diǎn)
到直線
的距離即為圓
的半徑,即
,借助于函數(shù)的性質(zhì)圓
面積的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直線
與曲線
相切,且過點(diǎn)
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,則
的斜率
,
∴直線
的方程為:
,又
,
∴
,即
. -----------------7分
∵點(diǎn)
到直線
的距離即為圓
的半徑,即
,--------------8分
故圓
的面積為
. --------------------9分
(Ⅲ)∵直線
的方程是
,
,且以點(diǎn)
為圓心的圓
與直線
相切∴點(diǎn)
到直線
的距離即為圓
的半徑,即
, ………10分
∴![]()
,
當(dāng)且僅當(dāng)
,即
,
時(shí)取等號.
故圓
面積的最小值
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com