題目列表(包括答案和解析)
(09年湖北百所重點聯考文)(13分)
某特許專營店銷售北京奧運會紀念章,每枚進價為5元,同時每銷售一枚這種紀念章還需向北京奧組委交特許經營管理費2元,預計這種紀念章以每枚20元的價格銷售時該店一年可銷售2000枚,經過市場調研發現每枚紀念章的銷售價格在每枚20元的基礎上每減少一元則增加銷售400枚,而每增加一元則減少銷售100枚,現設每枚紀念章的銷售價格為x元。
(1)寫出該特許專營店一年內銷售這種紀念章所獲得的利潤y元(y>0)與每枚紀念章的銷售價格
的函數關系式(并寫出這個函數的定義域);
(本題滿分12分)
已知奇函數
在定義域
上是減函數,滿足f(1-a)+f(1-2a)〈0,求
的取值范圍。
(本題滿分12分)
已知奇函數
在定義域
上是減函數,滿足f(1-a)+f(1-
2a)〈0,求
的取值范圍。
(本題滿分14分)
設函數
對于
都有
,且
時,
,
。
(1)說明函數
是奇函數還是偶函數?
(2)探究
在[-3,3]上是否有最值?若有,請求出最值,若沒有,說明理由;
(3)若
的定義域是[-2,2],解不等式:![]()
一、選擇題(每小題5分,滿分60分)
1
2
3
4
5
6
7
8
9
10
11
12
D
C
D
B
B
A
C
C
A
D
A
D
二、填空題(每小題4分,滿分16分)
13.-6 14.
15.
16.②③
三、解答題(第17、18、19、20、21題各12分,第22題14分,共74分)
17.(I)

(Ⅱ)


函數
的值域為
18.解:(I)記“甲回答對這道題”、“乙回答對這道題”、“丙回答對這道題”分別為事件
、
、
,則
,且有
即

(Ⅱ)由(1)
則甲、乙、丙三人中恰有兩人回答對該題的概率為:

19.解:法一
(I)設
是
的中點,連結
,
則四邊形
為方形,
,故
,

即
又
平面
(Ⅱ)由(I)知
平面
,
又
平面
,
,
取
的中點
,連結
又
,
則
,取
的中點
,連結
則
為二面角
的平面角
連結
,在
中,
,
取
的中點
,連結
,
,在
中,

二面角
的余弦值為
法二:
(I)以
為原點,
所在直線分別為
軸,
軸,
軸建立如圖所示的空間直角坐標系,則


又因為
所以,
平面
(Ⅱ)設
為平面
的一個法向量。
由
得
取
,則
又
,
設
為平面
的一個法向量,由
,
,
得
取
取
設
與
的夾角為
,二面角
為
,顯然
為銳角,
,即為所求
20.解:(I)
或
故
的單調遞增區間是
和
單調遞減區間是(0,2)
(Ⅱ)

在
和
遞增,在(-1,3)遞減。
有三個相異實根

21.解:(I)設
的公差為
,則:

(Ⅱ)當
時,
,由
,得
當
時,
,
,即
是以
為首項,
為公比的等比數列。
(Ⅲ)由(Ⅱ)可知:


22.解:(I)設過
與拋物線
的相切的直線的斜率是
,
則該切線的方程為:
由
得

則
都是方程
的解,故
(Ⅱ)設
由于
,故切線
的方程是:
則
,同理
則直線
的方程是
,則直線
過定點(0,2)
(Ⅲ)要使
最小,就是使得
到直線
的距離最小,而
到直線
的距離

當且僅當
即
時取等號
設
由
得
,則



湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com