題目列表(包括答案和解析)
函數
在同一個周期內,當
時,
取最大值1,當
時,
取最小值
。
(1)求函數的解析式![]()
(2)函數
的圖象經過怎樣的變換可得到
的圖象?
(3)若函數
滿足方程
求在
內的所有實數根之和.
【解析】第一問中利用![]()
又因![]()
又
函數![]()
第二問中,利用
的圖象向右平移
個單位得
的圖象
再由
圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
第三問中,利用三角函數的對稱性,
的周期為![]()
在
內恰有3個周期,
并且方程
在
內有6個實根且![]()
同理,
可得結論。
解:(1)![]()
又因![]()
又
函數![]()
(2)
的圖象向右平移
個單位得
的圖象
再由
圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
(3)
的周期為![]()
在
內恰有3個周期,
并且方程
在
內有6個實根且![]()
同理,![]()
故所有實數之和為![]()
(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數為11.
(1)求x2的系數的最小值;
(2)當x2的系數取得最小值時,求f (x)展開式中x的奇次冪項的系數之和.
解: (1)由已知
+2
=11,∴m+2n=11,x2的系數為
+22
=
+2n(n-1)=
+(11-m)(
-1)=(m-
)2+
.
∵m∈N*,∴m=5時,x2的系數取最小值22,此時n=3.
(2)由(1)知,當x2的系數取得最小值時,m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.設這時f (x)的展開式為f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+
33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
兩式相減得2(a1+a3+a5)=60, 故展開式中x的奇次冪項的系數之和為30.
在△ABC中,角A、B、C的對邊分別為a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),滿足
=![]()
(Ⅰ)求角B的大小;
(Ⅱ)設
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值為3,求k的值.
【解析】本試題主要考查了向量的數量積和三角函數,以及解三角形的綜合運用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二問中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-
=3,得k=
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com