題目列表(包括答案和解析)
已知m>1,直線
,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點
時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A![]()
、△B![]()
的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[
【解析】第一問中因為直線
經過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為![]()
第二問中設
,由
,消去x,得
,
則由
,知
<8,且有![]()
由題意知O為![]()
的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
已知曲線C:
(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當
解得
,所以m的取值范圍是![]()
(2)當m=4時,曲線C的方程為
,點A,B的坐標分別為
,
由
,得![]()
因為直線與曲線C交于不同的兩點,所以![]()
即![]()
設點M,N的坐標分別為
,則![]()
![]()
直線BM的方程為
,點G的坐標為![]()
因為直線AN和直線AG的斜率分別為![]()
所以
![]()
![]()
即
,故A,G,N三點共線。
已知曲線
上動點
到定點
與定直線
的距離之比為常數
.
(1)求曲線
的軌跡方程;
(2)若過點
引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線
的左頂點
為圓心作圓
:
,設圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點
作直線
的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,
;,化簡得
![]()
第三問點N與點M關于X軸對稱,設
,, 不妨設
.
由于點M在橢圓C上,所以
.
由已知
,則
,
由于
,故當
時,
取得最小值為
.
計算得,
,故
,又點
在圓
上,代入圓的方程得到
.
故圓T的方程為:![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com