題目列表(包括答案和解析)
已知函數
.(
)
(1)若
在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間
上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)
在區間
上單調遞增,
則
在區間
上恒成立. …………3分
即
,而當
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當
,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當
,即
時,同理可知,
在區間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使
在此區間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當
時,函數
的圖象恒在直線
下方.
已知函數
.
(Ⅰ)求函數
的單調遞增區間;
(Ⅱ)當
時,在曲線
上是否存在兩點
,使得曲線在
兩點處的切線均與直線
交于同一點?若存在,求出交點縱坐標的取值范圍;若不存在,請說明理由;
(Ⅲ)若
在區間
存在最大值
,試構造一個函數
,使得
同時滿足以下三個條件:①定義域
,且
;②當
時,
;③在
中使
取得最大值
時的
值,從小到大組成等差數列.(只要寫出函數
即可)
已知函數
.
(Ⅰ)求函數
的單調遞增區間;
(Ⅱ)當
時,在曲線
上是否存在兩點
,使得曲線在
兩點處的切線均與直線
交于同一點?若存在,求出交點縱坐標的取值范圍;若不存在,請說明理由;
(Ⅲ)若
在區間
存在最大值
,試構造一個函數
,使得
同時滿足以下三個條件:①定義域
,且
;②當
時,
;③在
中使
取得最大值
時的
值,從小到大組成等差數列.(只要寫出函數
即可)
設f(x)是定義在[0,1]上的函數,若存在x*∈(0,1),使得f(x)在[0,x*]上單調遞增,在[x*,1]上單調遞減,則稱f(x)為[0,1]上的單峰函數,x*為峰點,包含峰點的區間為含峰區間.對任意的[0,1]上的單峰函數f(x),下面研究縮短其含峰區間長度的方法.
(I)證明:對任意的
∈(O,1),
,若f(
)≥f(
),則(0,
)為含峰區間:若f(
)
f(
),則
為含峰區間:
(II)對給定的r(0<r<0.5),證明:存在
∈(0,1),滿足
,使得由(I)所確定的含峰區間的長度不大于0.5+r:
(III)選取
∈(O,1),,由(I)可確定含峰區間為
或
,在所得的含峰區間內選取
,由
與
或
與
類似地可確定一個新的含峰區間,在第一次確定的含峰區間為(0,
)的情況下,試確定的值
,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區間的長度縮短到0. 34(區間長度等于區間的右端點與左端點之差)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com