題目列表(包括答案和解析)
設函數
.
(Ⅰ) 當
時,求
的單調區間;
(Ⅱ) 若
在
上的最大值為
,求
的值.
【解析】第一問中利用函數
的定義域為(0,2),
.
當a=1時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
第二問中,利用當
時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數
的定義域為(0,2),
.
(1)當
時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
(2)當
時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
已知函數
=
.
(Ⅰ)當
時,求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當
時,
=
,
當
≤2時,由
≥3得
,解得
≤1;
當2<
<3時,
≥3,無解;
當
≥3時,由
≥3得
≥3,解得
≥8,
∴
≥3的解集為{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
當
∈[1,2]時,
=
=2,
∴
,有條件得
且
,即
,
故滿足條件的
的取值范圍為[-3,0]
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com