題目列表(包括答案和解析)
某學生在證明等差數列前n項和公式時,證法如下:
(1)當n=1時,S1=a1顯然成立.
(2)假設n=k時,公式成立,即
Sk=ka1+
,
當n=k+1時,
Sk+1=a1+a2+…+ak+ak+1
=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd
=(k+1)a1+(d+2d+…+kd)
=(k+1)a1+
d
=(k+1)a1+
d.
∴n=k+1時公式成立.
∴由(1)(2)可知對n∈N+,公式成立.
以上證明錯誤的是
當n取第一個值1時,證明不對
歸納假設寫法不對
從n=k到n=k+1的推理中未用歸納假設
從n=k到n=k+1的推理有錯誤
| C | 0m |
| C | rn-m |
| C | 1m |
| C | r-1n-m |
| C | rm |
| C | 0n-m |
| C | rn |
| ||||
|
| ||||||||||||
|
| C | 0m |
| C | rn-m |
| C | 1m |
| C | r-1n-m |
| C | rm |
| C | 0n-m |
| C | rn |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com