題目列表(包括答案和解析)
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意![]()
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
![]()
已知數(shù)列
的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項公式;
(Ⅱ) 設
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用
關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結論。
解:(Ⅰ)當
時,由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設
,
,
則
.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數(shù)學歸納法)①當
時,
,命題成立;
②假設
時,命題成立,即
,
則當
時,![]()
![]()
即![]()
即![]()
故當
時,命題成立.
綜上可知,對一切非零自然數(shù)
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
已知函數(shù)
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實數(shù)
,曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當
時,
,則
。
依題意得:
,即
解得
第二問當
時,
,令
得
,結合導數(shù)和函數(shù)之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當
時,
,令
得![]()
當
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調遞增 |
極大值 |
|
又
,
,
。∴
在
上的最大值為2.
②當
時,
.當
時,
,
最大值為0;
當
時,
在
上單調遞增。∴
在
最大值為
。
綜上,當
時,即
時,
在區(qū)間
上的最大值為2;
當
時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù)
,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com